浏览全部资源
扫码关注微信
1. 中国航天员科研训练中心 北京,100094
2. 清华大学 精密仪器系 北京,100084
收稿日期:2014-12-14,
修回日期:2015-02-08,
纸质出版日期:2015-05-25
移动端阅览
施镠佳, 谭映军, 董景新等. 空间细胞培养芯片系统的弹性膜驱动样品更换[J]. 光学精密工程, 2015,23(5): 1340-1346
SHI Liu-jia, TAN Ying-jun, DONG Jing-xin etc. Elastic membrane actuated sample replacement for space cell culture microchips[J]. Editorial Office of Optics and Precision Engineering, 2015,23(5): 1340-1346
施镠佳, 谭映军, 董景新等. 空间细胞培养芯片系统的弹性膜驱动样品更换[J]. 光学精密工程, 2015,23(5): 1340-1346 DOI: 10.3788/OPE.20152305.1340.
SHI Liu-jia, TAN Ying-jun, DONG Jing-xin etc. Elastic membrane actuated sample replacement for space cell culture microchips[J]. Editorial Office of Optics and Precision Engineering, 2015,23(5): 1340-1346 DOI: 10.3788/OPE.20152305.1340.
提出了一种细胞培养池顶聚二甲基硅氧烷(PDMS)弹性膜驱动的样品更换方法
用于减少样品更换所需的流体驱动部件和样品消耗。排出废液时
关断样品贮存池与细胞培养池间微阀
培养池中液体被微泵抽出
池顶弹性膜随之塌陷;塌陷至所需程度时关闭微泵及下游微阀
开启所需样品贮存池与培养池间微阀
新样品将被池顶弹性膜反弹产生的弹性力吸入培养池;反复几次即可完成培养池内新旧样品更换。结合理论分析、有限元仿真和实验结果
对影响样品更换效果的主要因素:培养池顶弹性膜所受净压力、膜厚、样品贮存池到培养池微通道路径形状进行了优化。优化后选定膜厚为0.8 mm、微泵流量为1.67 mL/min、直线型微流道进行的实验显示其80 s左右即可完成90%以上样品更换
样品消耗和培养池内流体剪切力分别小于相同换液率下原有样品更换方式的1/4和1/10。该方法可减少样品损失和微泵、微阀工作时间
简化芯片系统结构、减少总质量和总功耗
换液过程无需人工干预
有利于系统的小型化和自动化
尤其适用于我国目前的空间细胞培养芯片系统。
A sample replacement method base on the elastic force produced by the polydimethylsiloxane (PDMS) elastic membrane was established to reduce the fluid driving parts and sample consumption in the sample replacement. In the draining stage
the microvalve between sample reservoirs and cell culture pool was closed
the liquid in the cell culture pool was pumped out by using a micropump
and the elastic membrane at the top of the pool was collapsed. Once the elastic membrane was collapsed to a certain extent
the micropump and the microvalve between cell culture pool and sample waste reservoirs were closed
and the microvalve between cell culture pool and required sample reservoirs was opened immediately. The new sample would be taken into the pool by the elastic force generated from the elastic membrane bounce. The aforementioned steps were repeated several times and the sample wastes could be replaced. The main factors affecting the replacing effect
including the net pressure put on the top elastic membrane
the film thicknesses and the shape of the path from sample reservoirs to cell culture pool
were optimized according to the theoretical analysis
the finite element simulation and the experiment results. The optimal parameters are the film thickness to be 0.8 mm
the micropump flow rate 1.67 mL/min and the straight path
respectively. On the parameters mentioned above
more than 90% sample wastes are replaced within 80 s
meanwhile the sample consumption and fluid shear stress in the pool are less than 1/4 and 1/10 of the existing sample replacement system under the same replacing rate
respectively. The sample replacement method proposed shows its advantages on simple structure
low-sample/power consumption
and fewer-microchip mass
which is benefit to the miniaturization and automation of the space cell culture micro systems.
夏伟强, 樊尚春, 等. 空间细胞生物学研究的新进展[J]. 航天器环境工程, 2010, 27(6): 784-794. XIA W Q, FAN SH CH. New progress of spatial cell biology [J]. Spacecraft Environment Engineering, 2010, 27(6): 784-794. (in Chinese)
MATTHIAS M, SAVAS T. Microfluidic cell culture [J]. Current Opinion in Biotechnology, 2014, 25: 95-102.
GAO D, LIU H X, JIANG Y Y, et al.. Recent developments in microfluidic devices forin vitro cell culture for cell-biology research [J]. Trends in Analytical Chemistry, 2012, 35: 150-164.
KIM J, TAYLOR D, AGRAWAL N, et al.. A programmable microfluidic cell array for combinatorial drug screening [J]. Lab Chip, 2012, 12, 1813-1822.
KENICHI F, IOANNIS K. Z, LIU Y C, et al.. A novel microfluidic platform for high-resolution imaging of a three-dimensional cell culture under a controlled hypoxic environment[J]. Lab Chip, 2012, 12, 4855-4863.
STEFANO G, ENRICO M, LIA P, et al.. Optimal periodic perfusion strategy for robust longterm microfluidic cell culture [J]. Lab Chip, 2013, 13, 4430-4441.
PEDER S P, METTE H, DAVID S, et al.. A self-contained, programmable microfluidic cell culture system with real-time microscopy access [J]. Biomed Microdevices, 2012, 14:385-399.
HUANG CH W, LEE G B. A microfluidic system for automatic cell culture [J]. Journal of Micromechanics and Microengineering, 2007, 17:1266-1274.
施镠佳, 谭映军, 董景新, 等. 一种集成化微流控细胞培养芯片及其制备方法[R]. 中国: CN103667054A, 2014-03-26. SHI L J, TAN Y J, DONG J X, et al.. An integrated microfluidic cell culture chip and its preparation method [R]. China: CN103667054A, 2014-03-26. (in Chinese)
王春艳, 谭映军, 聂捷琳, 等. 多坝式空间细胞培养室设计参数的微重力实验验证[J]. 航天医学与医学工程, 2010, 23(4):243-247. WANG CH Y, TAN Y J, NIE J L, et al..Validation of design parameters of the multi-bar space cell culture chamber under microgravity experiments [J]. Space Medicine and Medical Engineering, 2010, 23(4):243-247.(in Chinese)
施镠佳, 董景新, 谭映军, 等. 通道型电磁常闭微阀结构参数优化[J]. 光学精密工程, 2014, 22(2):406-413. SHI L J, DONG J X, TAN Y J, et al.. Optimization of structure parameters of channel-type electromagnetic microvalves [J]. Opt. Precision Eng., 2014, 22(2):406-413.(in Chinese)
CAO J, USAMI SH, DONG CH. Development of a side-view chamber for studying cell-surface adhesion under flow conditions [J].Annals of Biomedical Engineering, 1997, 25: 573-580.
杨志. 不同重力环境下流体剪切应力对人骨肉瘤成骨样细胞Cbfa1表达的影响[P]. 第四军医大学, 2006, 5. YANG ZH. The influence of different gravitational environments on the expression of Cbfal in human osteosarcoma cells induced by fluid shear stress [P]. Fourth Military Medical university, 2006, 5. (in Chinese)
0
浏览量
341
下载量
3
CSCD
关联资源
相关文章
相关作者
相关机构