浏览全部资源
扫码关注微信
1. 宁波大学 机械工程与力学学院,浙江 宁波,315211
2. 浙江省零件轧制成型技术研究重点实验室,浙江 宁波,315211
收稿日期:2014-11-21,
修回日期:2014-12-15,
纸质出版日期:2015-05-25
移动端阅览
崔玉国, 朱耀祥, 娄军强等. 压电微夹钳钳指位移与夹持力的检测[J]. 光学精密工程, 2015,23(5): 1372-1379
CUI Yu-guo, ZHU Yao-xiang, LOU Jun-qiang etc. Detection of finger displcement and gripping force of piezoelectric micro-gripper[J]. Editorial Office of Optics and Precision Engineering, 2015,23(5): 1372-1379
崔玉国, 朱耀祥, 娄军强等. 压电微夹钳钳指位移与夹持力的检测[J]. 光学精密工程, 2015,23(5): 1372-1379 DOI: 10.3788/OPE.20152305.1372.
CUI Yu-guo, ZHU Yao-xiang, LOU Jun-qiang etc. Detection of finger displcement and gripping force of piezoelectric micro-gripper[J]. Editorial Office of Optics and Precision Engineering, 2015,23(5): 1372-1379 DOI: 10.3788/OPE.20152305.1372.
为避免在利用压电微夹钳夹持微对象过程中可能造成微对象的损伤或脱落
提出用电阻应变片来检测压电微夹钳的钳指位移与夹持力。采用柔性杠杆放大机构设计了微夹钳
该微夹钳结构微小且紧凑、钳指可平动、指尖夹持灵敏度高。基于悬臂梁弯曲变形理论及有限元方法
分析了用于检测钳指位移与夹持力的微夹钳弹性敏感单元的应变特性。分析结果表明:敏感单元的最大应变部位靠近其底端
钳指位移与夹持力同敏感单元的应变成正比;实验标定了钳指位移与夹持力同弹性敏感单元应变的关系
标定结果表明两种关系均为线性关系;最后实验测试了钳指位移与夹持力的大小。结果表明:在150 V的最大电压下
不夹持微对象时钳指的最大位移为78.35 m
夹持
0.3 mm、长8 mm的微轴时钳指的夹持力为9.24 N。
To avoid damage or drop of micro objects in the gripping processing by a piezoelectric micro-gripper
the finger displacement and gripping force of the piezoelectric micro-gripper were detected by a resistance strain gauge. A novel gripper was presented by using flexible lever magnifying mechanism. The gripper has advantages of compact structure
integrated gripper body
translational motion of fingers
and the high sensitivity of fingertips. Based on bending theory of cantilever beam and finite element method
the strain characteristics of the elastic sensitive cell of the gripper were analyzed
the conclusion shows that the maximum strain part of the sensitive cell is closed to the bottom of the finger
and the displacement and gripping force of the fingers are proportional to the strain of the elastic sensitive cell. Then
relationships between the finger displacement
gripping force and the strain of the elastic sensitive cell were calibrated by experiments. The calibrating results show that both the two relationships are linear. Finally
the actual finger displacement and gripping force of the gripper were tested
and the tested results show that when a maximal voltage of 150 V is applied to the piezoelectric actuator
the maximal displacement of finger is 78.35 m in no-load condition
and the gripping force of the fingers is 9.24
N for holding a micro shaft with
0.3 mm and length of 8 mm.
VOLLAND B E, HEERLEIN H, RANGELOW I W. Electrostatically driven microgripper [J]. Microelectronic Engineering, 2002, 61-62: 1015-1023.
陈立国, 刘柏旭. 复合式MEMS微夹持器的研制[J]. 光学精密工程, 2009, 17(8): 1928-1934. CHEN L G, LIU B X.Development of hybrid-type MEMS microgripper [J]. Opt. Precision Eng., 2009, 17 (8): 1928-1934(in Chinese)
ALOGLA A, SCANLAN P, SHU W M, REUBEN R L. A scalable syringe-actuated microgripper for biological manipulation [J]. Sensors and Actuators A: Physical, 2013, 10(202): 135-139.
李路明, 任延同, 王立鼎. 微夹钳技术发展现状及应用研究[J]. 光学精密工程, 1997, 5(4):8-13. LI L M, REN Y T, WANG L D. Development of microgripper technique [J]. Opt. Precision Eng., 1997, 5 (4):8-13.(in Chinese)
张培玉, 武国英, 郝一龙, 等. 微夹钳研究的进展与展望[J]. 光学精密工程, 2000, 8(3): 292-296. ZHANG P Y, WU G Y, HAO Y L, et al.. The progress and prospect of micro-gripper researching [J]. Opt. Precision Eng. 2000, 8(3):292-296. (in Chinese)
王晓东, 刘冲, 王立鼎. 微型夹钳的最新研究[J]. 功能材料与器件学报, 2004, 10 (11): 1-8. WANG X D, LIU CH, WANG L D. New aspects in microgrippers [J]. Journal of Functional Materials and Devices, 2004, 10 (11): 1-8.(in Chinese)
FAHLBUSCH S, FATIKOW S. Micro force sensing in a micro robotic system [J]. Proceedings of the 2001 IEEE International Conference on Robotics & Automation, 2001, 4: 3435-3440.
吕遐东, 黄心汉, 蔡建华. 具备多操作手协调的微装配机器人系统[J]. 华中科技大学学报:自然科学版, 2006, 34(11): 70-73. LV X D, HUANG X H, CAI J H. A microasse mbl y robot syste m with multi-mani pul at or cooperati on [J]. Journal of Huazhong University of Science and Technology:Nature Science Edition, 2006, 34(11): 70-73. (in Chinese)
王家畴, 荣伟彬, 孙立宁, 等. 新型集成三维微力检测微夹持器[J]. 光学精密工程, 2007, 15(4): 550-556. WANG J CH, RONG W B, SUN L N, et al.. A novel micro-gripper integrating micro tri-axial force sensor [J]. Opt. Precision Eng., 2007, 15(4): 550-556.(in Chinese)
余大海, 吴文荣, 罗敏, 等. 适用于ICF靶夹持的多用微夹持器[J]. 强激光与粒子束, 2012(1): 115-118. YU D H, WU W R, LUO M, et al.. Multi-purpose microgripper for ICF targets [J]. High Power Laser and Particle Beams, 2012(1): 115-118.(in Chinese)
KIM D H, KIM B, KANG H. Development of a piezoelectric polymer-based sensorized microgripper for microassembly and micromanipulation [J]. Microsystem Technologies, 2004, 10: 275-280.
SUN Y, WAN K T, ROBERTS K P. Mechanical property characterization of mouse zona pellucida [J]. IEEE Transactions on Nanobioscience, 2003, 2(4): 279-286.
张然, 褚金奎, 王海祥. 具有三层结构的SU-8胶V形微电热驱动器[J]. 光学精密工程, 2012, 20(7): 1500-1508. ZHANG R, ZHU J K, WANG H Y. SU-8 chevron electrothermal micro-actuator with three-layer structures [J]. Opt. Precision Eng., 2012, 20(7): 1500-1508.(in Chinese)
郝永平, 董福禄, 张嘉易. 基于MEMS机构装配的微夹持器研究[J]. 中国机械工程, 2014, 25(5): 596-601. HAO Y P, DONG F L, ZHANG J Y. Studyon micro-gripper based on MEMS mechanism assembly [J]. China Mechanical Engineering, 2014, 25(5): 596-601.(in Chinese)
包丽雅, 周娴. 用于微装配的二级放大微夹持器的设计与实验[J]. 机械设计与研究, 2014, 30(1): 47-49. BAO L Y, ZHOU X. Design of micro-gripper with two-stage amplifier for micro-assembly and its experimental research [J]. Machine Design & Research, 2014, 30(1): 47-49.(in Chinese)
MOKRANE B, MARCELO G F, YANN L G, et al.. An output feedback LPV control strategy of a nonlinear electrostatic microgripper through a singular implicit modeling[J]. Control Engineering Practice, 2014, 28: 97-111.
NELSON B J, ZHOU Y, VIKRAMADITYA B. Sensor-based microassembly of hybrid MEMS devices[J]. IEEE Communications Magazine, 1998, 18: 35-45.
0
浏览量
667
下载量
18
CSCD
关联资源
相关文章
相关作者
相关机构