浏览全部资源
扫码关注微信
1. 浙江大学 机械工程学系 浙江省先进制造技术重点实验室,浙江 杭州,310027
2. 华南理工大学 机械与汽车工程学院 广东省精密装备与制造技术重点实验室,广东 广州,510640
[ "何振亚(1985-),女,广东梅州人,博士研究生,2010年于浙江大学获得硕士学位,主要从事数控技术、精密机床等方面的研究。E-mail:hezhenya@zju.edu.cn" ]
[ "陈子辰(1950-),男,福建福州人,博士,教授,博士生导师,1989年于浙江大学获得博士学位,主要从事新型数控系统研究、精密工程、微机电系统理论和微制造技术、仿生学技术等方面的研究。E-mail:chenzc@zju.edu.cn" ]
[ "傅建中(1968-),男,浙江衢州人,博士,教授,博士生导师,1996年于浙江大学获得博士学位,主要从事高档数控机床及数控技术、精密制造技术、智能制造装备等方面的研究。E-mail:fjz@zju.edu.cn" ]
收稿日期:2014-08-20,
修回日期:2014-10-13,
纸质出版日期:2015-05-25
移动端阅览
何振亚, 傅建中, 陈子辰. 基于球杆仪检测五轴数控机床主轴的热误差[J]. 光学精密工程, 2015,23(5): 1401-1408
HE Zhen-ya, FU Jian-zhong, CHEN Zi-chen. Thermal error measurement of spindle for 5-axis CNC machine tool based on ball bar[J]. Editorial Office of Optics and Precision Engineering, 2015,23(5): 1401-1408
何振亚, 傅建中, 陈子辰. 基于球杆仪检测五轴数控机床主轴的热误差[J]. 光学精密工程, 2015,23(5): 1401-1408 DOI: 10.3788/OPE.20152305.1401.
HE Zhen-ya, FU Jian-zhong, CHEN Zi-chen. Thermal error measurement of spindle for 5-axis CNC machine tool based on ball bar[J]. Editorial Office of Optics and Precision Engineering, 2015,23(5): 1401-1408 DOI: 10.3788/OPE.20152305.1401.
提出了一种基于球杆仪的主轴热误差检测新方法用于五轴数控机床主轴热误差的便捷检测。该方法借助五轴数控机床的两个旋转轴分别单独运动
实现两个正交圆或圆弧构成的球杆仪空间轨迹测量;采用最小二乘方法对测量数据进行处理
求解主轴空间位置;通过初始状态和经过一定时间间隔测量多组数据
分离得到相应时间段的主轴热误差
包括1个轴向热伸长和2个径向热误差。以双转台五轴数控机床为例
从安装方法、测量步骤和辨识原理等方面介绍基于球杆仪的主轴热误差检测方法
并与ISO 230-3中的5点法进行了对比实验。实验结果显示:该方法的辨识结果与5点法测量结果的平均相对偏差小于15.8%
验证了本文方法的可行性和有效性。该方法测量装置简洁
便于携带、安装和测量
测试结果可为五轴数控机床主轴热误差补偿提供依据
从而有效地提高机床的加工精度。
A novel method based on a ball bar to measure the thermal errors of machine tool spindles was proposed to compensate the thermal error of 5-axis Computer Numerical Control(CNC) machine tools. With the help of the movements of the two rotational axes
the volumetric paths comprised of two orthogonal circles or arcs were measured by the ball bar. The least square method was used to process the measurement data to obtain the volumetric positions of the machine tool spindles. Through frequently testing with this method at certain intervals
the thermal errors of machine tool spindles could be calculated
including 1 axial elongation and 2 radial thermal errors. To explain this method
a 5-axis CNC machine tool with a titling rotary table was taken as an example to elaborate the installation
measurement procedure and the identification principle. Finally
a contrast experiment was conducted with the 5-point method mentioned in ISO 230-3. The result shows that measurement results of the presented method are consistent with those of 5-point method mentioned in ISO 230-3 and the mean relative deviation of the two methods is less than 15.8%
which verifies the feasibility and reliability of the presented method. The equipment is concise
portable
and easy to install. Moreover
the obtained results could be used for thermal error compensation of spindles to improve the machining precision of 5-axis machine tools.
SHEN H, FU J, HE Y, et al.. On-line asynchronous compensation methods for static/quasi-static error implemented on CNC machine tools[J]. International Journal of Machine Tools & Manufacture, 2012, 60: 14-26.
CREIGHTON E, HONEGGER A, TULSIAN A, et al.. Analysis of thermal errors in a high-speed micro-milling spindle[J]. International Journal of Machine Tools and Manufacture, 2010, 50(4): 386-393.
CHEN J S. A study of thermally induced machine tool errors in real cutting conditions[J]. International Journal of Machine Tools and Manufacture, 1996, 36(12): 1401-1411.
MOU J. A method of using neural networks and inverse kinematics for machine tools error estimation and correction[J]. Journal of Manufacturing Science and Engineering, 1997, 119(2): 247-254.
岳红新, 石岩, 李国芹. 基于神经网络的主轴热误差补偿技术研究[J]. 制造技术与机床, 2012(3): 23-25. YUE H X, SHI Y, LI G Q. Research on thermal error compensate of spindle based on neural network[J]. Manufacturing Technology & Machine Tool, 2012(3): 23-25. (in Chinese)
谢春, 张为民. 车铣复合加工中心综合误差检测及补偿策略[J]. 光学精密工程, 2014, 22(4): 1004-1011. XIE CH, ZHANG W M. Comprehensive measurement errors of 5-axis turning-milling centers and their compensation startegies[J]. Opt. Precision Eng., 2014, 22(4): 1004-1011. (in Chinese)
RAMESH R, MANNAN M, POO A. Support vector machines model for classification of thermal error in machine tools [J]. The International Journal of Advanced Manufacturing Technology, 2002, 20(2): 114-120.
林伟青, 傅建中, 许亚洲, 等. 基于最小二乘支持向量机的数控机床热误差预测[J]. 浙江大学学报: 工学版, 2008, 42(6): 905-908. LIN W Q, FU J ZH, XU Y ZH, et al..Thermal error prediction of numerical control machine tools based on least squares support vector machines[J]. Journal of Zhejiang University: Engineering Science, 2008, 42(6): 905-908. (in Chinese)
苗恩铭, 龚亚运, 成天驹, 等. 支持向量回归机在数控加工中心热误差建模中的应用[J]. 光学精密工程, 2013, 21(4): 980-986. MIAO E M, GONG Y Y, CHENG T H, et al..Application of support vector regression machine to thermal error modelling of machine tools[J]. Opt. Precision Eng., 2013, 21(4): 980-986. (in Chinese)
林伟青, 傅建中, 许亚洲, 等. 基于LS-SVM与遗传算法的数控机床热误差辨识温度传感器优化策略[J]. 光学精密工程, 2008, 16(9): 1682-1687. LIN W Q, FU J ZH, XU Y ZH, et al..Optimal sensor placement for thermal error identification of NC machine tool based on LS-SVM and genetic algorithm[J]. Opt. Precision Eng., 2008, 16(9): 1682-1687. (in Chinese)
YAN X H, FU J Z, CHEN Z C. Bayesian networks modeling for thermal error of numerical control machine tools[J]. Journal of Zhejiang University Science A, 2008, 9(11): 1524-1530.
RAMESH R, MANNAN M, POO A, et al.. Thermal error measurement and modelling in machine tools. Part II. Hybrid Bayesian network-support vector machine model[J]. International Journal of Machine Tools and Manufacture, 2003, 43(4): 405-419.
郭前建, 杨建国. 基于蚁群算法的机床热误差建模技术[J]. 上海交通大学学报, 2009(5): 803-806. GUO Q J, YANG J G. Thermal error modeling on machine tools based on ant colony algorithm[J].Journal of Shanghai Jiaotong University, 2009(5): 803-806. (in Chinese)
YANG H, NI J. Adaptive model estimation of machine-tool thermal errors based on recursive dynamic modeling strategy[J]. International Journal of Machine Tools and Manufacture, 2005, 45(1): 1-11.
张毅, 杨建国. 基于灰色神经网络的机床热误差建模[J]. 上海交通大学学报, 2011, 45(11): 1581-1586. ZHANG Y, YANG J G. Grey neural network modeling for machine tool thermal error[J].Journal of Shanghai Jiaotong University, 2011, 45(11): 1581-1586.(in Chinese)
MAYR J, JEDRZEJEWSKI J, UHLMANN E, et al.. Thermal issues in machine tools[J]. CIRP Annals-Manufacturing Technology, 2012, 61(2): 771-791.
ISO 230-3: 2001, Test code for machine tools-Part3: Determination of thermal effects[S]. ISO, Geneva, Switzerland.
PAHK H, LEE S. Thermal error measurement and real time compensation system for the CNC machine tools incorporating the spindle thermal error and the feed axis thermal error[J]. The International Journal of Advanced Manufacturing Technology, 2002, 20(7): 487-494.
SRINIVASA N, ZIEGERT J, MIZE C. Spindle thermal drift measurement using the laser ball bar[J]. Precision Engineering, 1996, 18(2): 118-128.
YANG S H, KIM K H, PARK Y K. Measurement of spindle thermal errors in machine tool using hemispherical ball bar test[J]. International Journal of Machine Tools and Manufacture, 2004, 44(2): 333-340.
DELBRESSINE F, FLORUSSEN G, SCHIJVENAARS L, et al.. Modelling thermomechanical behaviour of multi-axis machine tools[J]. Precision Engineering, 2006, 30(1): 47-53.
商鹏. 基于球杆仪的高速五轴数控机床综合误差建模与检测方法[D].天津: 天津大学, 2008. SHANG P.The DBB-based errors modeling and measurement method for 5-axis high speed CNC machine tools[D]. Tianjin: Tianjin University, 2008. (in Chinese)
0
浏览量
884
下载量
5
CSCD
关联资源
相关文章
相关作者
相关机构