浏览全部资源
扫码关注微信
1. 重庆大学 光电技术与系统教育部重点实验室 重庆,400044
2. 酒泉卫星发射中心,甘肃 酒泉,735300
收稿日期:2014-12-04,
修回日期:2015-02-02,
纸质出版日期:2015-05-25
移动端阅览
李志敏, 张杰, 黄鸿等. 面向高光谱图像分类的半监督丛流形学习[J]. 光学精密工程, 2015,23(5): 1434-1442
LI Zhi-min, ZHANG Jie, HUANG Hong etc. Semi-supervised bundle manifold learning for hyperspectral image classification[J]. Editorial Office of Optics and Precision Engineering, 2015,23(5): 1434-1442
李志敏, 张杰, 黄鸿等. 面向高光谱图像分类的半监督丛流形学习[J]. 光学精密工程, 2015,23(5): 1434-1442 DOI: 10.3788/OPE.20152305.1434.
LI Zhi-min, ZHANG Jie, HUANG Hong etc. Semi-supervised bundle manifold learning for hyperspectral image classification[J]. Editorial Office of Optics and Precision Engineering, 2015,23(5): 1434-1442 DOI: 10.3788/OPE.20152305.1434.
考虑高光谱遥感数据集多类别非线性的特点
本文假设高光谱遥感数据集具有丛流形结构属性
提出了一种半监督丛流形学习(SSBML)算法来有效提取高光谱遥感图像的鉴别特征。该算法利用标记样本和无标记样本构建两个近邻关系图来保持数据集中丛流形的"整体"结构(各个子流形之间的相互关系)和每个子流形的内蕴结构特征
实现半监督的丛流形学习。在肯尼迪航天中心(KSC)和帕维亚大学(PaviaU)高光谱数据集上的实验结果表明:该算法可以发现高光谱遥感数据集中丛流形结构的精细特征
有效提升高光谱遥感图像的分类精度。实验显示:该算法的总体分类精度比单一流形假设的局部保形投影(LPP)和邻域保持嵌入(NPE)算法提升了约2.9%~15.7%
比半监督最大边界准则(SSMMC)和半监督流形保持嵌入 (SSSMPE)等半监督算法提升了约2.6%~12.4%。
On the basis of multi-class and nonlinear characteristics of hyperspectral remote sensing image database
this paper assumes that hyperspectral remote sensing database have a bundle manifold structure property and proposes a Semi-supervised Bundle Manifold Learning (SSBML) algorithm to effectively extract the discriminant characteristics of hyperspectral remote sensing image. The algorithm uses labeled samples and unlabeled samples to construct two neighborhood graphs to maintain a "whole" structure (the relationship between the various sub-manifolds) of bundle manifold in the data set and the intrinsic structure characteristics in each sub-manifold. By which
it achieves semi-supervised bundle manifold learning. The experimental results on Kennedy Space Center(KSC) and PaviaU hyperspectral database show that the algorithm efficiently discovers the subtle characteristics of the bundle manifold structure in hyperspectral remote sensing database
and enhances the classification accuracy of hyperspectral remote sensing images. For the overall classification accuracy
this algorithm is improved by 2.9%15.7% as compared with those of Locality Preserving Projection(LPP) and Neighborhood Preserving Embedding(NPE) algorithm based on single-manifold assumptions
and increased by 2.6%12.4% as compared with those of the Semi-Supervised Maximum Margin Criterion (SSMMC)and the Semi-Supervised Sub-Manifold Preserving Embedding(SSSMPE) based on semi-supervised algorithms.
杜博, 张乐飞, 张良培, 等. 高光谱图像降维的判别流形学习方法[J]. 光子学报, 2013, 42(3):320-325. DU B, ZHANG L F, ZHANG L P, et al.. Discriminant manifold learning approach for hyperspectral image dimension reduction [J]. ACTA PHOTONIC SINICA, 2013, 42(3): 320-325.(in Chinese)
陈宏达, 普晗晔, 王斌, 等. 基于图像欧氏距离的高光谱图像流形降维算法[J]. 红外与毫米波学报, 2013, 32(5):450-455. CHEN H D, PU H H, WANG B, et al.. Image Euclidean distance-based manifold dimensionality reduction algorithm for hyperspectral imagery [J]. Journal of Infrared and Millimeter Wave, 2013, 32(5): 450-455. (in Chinese)
宋相法, 焦李成. 基于稀疏表示及光谱信息的高光谱遥感图像分类[J]. 电子与信息学报, 2012, 34(2): 268-272. SONG X F, LI J CH. Classification hyperspectral remote sensing image based on sparse representation and spectral information [J]. Journal of Electronics & Information Technology, 2012, 34(2): 268-272. (in Chinese)
黄鸿, 曲焕鹏. 基于半监督稀疏鉴别嵌入的高光谱遥感影像分类[J]. 光学精密工程, 2014, 22(2):434-442. HUANG H, QU H P. Hyperspectral remote sensing image classification based on SSDE [J].Opt. Precision Eng., 2014, 22(2): 434-442.(in Chinese)
ABDI H, WILLIAMS L J. Principal component analysis [J].Wiley Interdisciplinary Reviews: Computational Statistics, 2010, 2(4): 433-459.
MOULIN C, LARGERON C, DUCOTTET C, et al.. Fisher linear discriminant analysis for text-image combination in multimedia information retrieval [J]. Pattern Recognition, 2014, 47(1): 260-269.
WAN M, LAI Z, JIN Z. Feature extraction using two-dimensional local graph embedding based on maximum margin criterion [J]. Applied Mathematics and Computation, 2011, 217(23): 9659-9668.
ROSMAN G, BRONSTEIN M M, BRONSTEIN A M, et al.. Nonlinear dimensionality reduction by topologically constrained isometric embedding[J]. International Journal of Computer Vision, 2010, 89(1): 56-68.
ZHAO X, ZHANG S. Facial expression recognition using local binary patterns and discriminant kernel locally linear embedding [J]. EURASIP Journal on Advances in Signal Processing, 2012, 2012(1): 1-9.
LUO W. Face recognition based on Laplacian Eigenmaps [C].Proceedings of the 2011 IEEE International Conference on Computer Science and Service System (CSSS), Nanjing, China, 2011: 416-419.
HE X, CAI D, YAN S, et al.. Neighborhood preserving embedding [C].Proceedings of the 2005 IEEE International Conference on Computer Vision(ICCV), Beijing, china, 2005:1208-1213.
HE X, NIYOGI P. Locality preserving projections [C].Proceedings of the Advances in Neural Information Processing Systems, Vancouver, BC, Canada, 2004: 234-241.
SONG Y Q, NIE F P, ZHANG C S, et al.. A unified framework for semi-supervised dimensionality reduction [J].Pattern Recognition, 2008, 41(9):2789-2799.
SONG Y Q, NIE F P, ZHANG C S. Semi-supervised sub-manifold discriminant analysis [J].Pattern Recognition Letters, 2008, 29(13): 1806-1813.
BENGIO Y, MONPERRUS M. Non-local manifold tangent learning [J].Advances in Neural Information Processing Systems, 2005, 17: 129-136.
LI CH G, GUO J, ZHANG H G. Learning Bundle Manifold by Double Neighborhood Graphs [M].Computer Vision-ACCV 2009, Springer Berlin Heidelberg, 2010: 321-330.
0
浏览量
605
下载量
6
CSCD
关联资源
相关文章
相关作者
相关机构