浏览全部资源
扫码关注微信
哈尔滨工业大学 空间光学工程研究中心,黑龙江 哈尔滨,150001
收稿日期:2015-01-20,
修回日期:2015-02-12,
纸质出版日期:2015-05-25
移动端阅览
智喜洋, 张伟, 侯晴宇*等. 基于空不变图像复原的光学遥感成像系统优化[J]. 光学精密工程, 2015,23(5): 1490-1497
ZHI Xi-yang, ZHANG Wei, HOU Qing-yu* etc. Optimization for optical remote sensing imaging system based on space-invariant image restoration[J]. Editorial Office of Optics and Precision Engineering, 2015,23(5): 1490-1497
智喜洋, 张伟, 侯晴宇*等. 基于空不变图像复原的光学遥感成像系统优化[J]. 光学精密工程, 2015,23(5): 1490-1497 DOI: 10.3788/OPE.20152305.1490.
ZHI Xi-yang, ZHANG Wei, HOU Qing-yu* etc. Optimization for optical remote sensing imaging system based on space-invariant image restoration[J]. Editorial Office of Optics and Precision Engineering, 2015,23(5): 1490-1497 DOI: 10.3788/OPE.20152305.1490.
提出了依据复原处理来优化设计遥感成像系统的思想。对影响复原处理性能的主要链路环节因素及其关系进行了理论分析、半物理和仿真实验以及正交试验。通过复原问题的数学模型
从理论上提出相机调制传递函数(MTF)的空间变化性(MTF
SV
)、数据压缩比(
C
R
)和非均匀性校正残差(
NC
R
)是影响空不变复原处理的主要因素;然后通过搭建半物理平台和仿真实验
分析上述因素导致的处理误差对复原图像判读质量的影响;最后利用组合数学理论
通过MTF
SV
、
C
R
、
NC
R
多因素多水平图像复原的正交试验
建立它们与处理性能间的关系量表。实验结果表明:在遥感成像系统MTF
SV
小于10%、
C
R
小于4:1、
NC
R
不大于3%
而系统MTF
N
仅为0.07的情况下
采用空不变复原处理仍可提高图像MTF面积达70%以上
且能保持图像信噪比(SNR)不变
而处理误差所致的图像失真也不会影响判读质量。
An optimizing design idea for optical remote sensing imaging systems based on restoration processing was proposed. The main imaging-chain components effecting restoration processing performance were explored by theoretical analyzed
semi-physical simulation experiments and orthogonal experiments. According to deducing a mathematical model of restoration problems
it points out in theory that the main factors impacting the restoration performance are the imaging system Modulation Transfer Function space-variant (MTF
SV
)
data compression ratio (
C
R
) and nonuniformity correction error (
NC
R
). Then
the restoration distortions that effect the interpretation capability of images owing to the above factors were analyzed by using a semi-physical imaging platform and simulation experiments. Finally
the relationship between restoration performance and the above metrics was established by using combined mathematics and an orthogonal experiment for the restored images with multilevel MTF
SV
C
R
and
NC
R
. Experimental results indicate that the restoration performs well in a quite low MTF value at Nyquist frequency (only 0.07)
the MTF
SV
is less than 10%
C
R
less than 4:1 and the
NC
R
is no more than 3%
which not only implements the MTF area more than 70% but also keeps Signal to Noise Ratio(SNR) invariant and achieves available image quality for the interpretation as well.
KUBIK P, PASCAL V, LATRY C, et al.. Pleiades image quality: from users' needs to products definition [C]. Sensors, Systems, and Next-Generation Satellites IX, Proc. SPIE 5978, 2005:188-198.
CHOI T. IKONOS Satellite on Orbit Modulation Transfer Function (MTF) Measurement using Edge and Pulse Method [D]. South Dakota: South Dakota State University, 2002: 19-89.
LEEA D, SEO D C, SONG J H, et al. Image restoration of calibration and validation for KOMPSAT-2 [C]. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Beijing: 2008: 57-62.
满益云, 陈世平, 刘兆军, 等. MTFC在光学遥感成像系统优化设计中的应用研究[J]. 航天返回与遥感, 2007, 28(4):39-47. MAN Y Y, CHEN SH P, LIU ZH J, et al.. Study on MTF compensation application to the optimization design of optical remote sensing imaging system[J]. Spacecraft Recovery & Remote Sensing, 2007, 28(4): 39-47. (in Chinese)
ANDREWS H C, HUNT B R. Digital Image Restoration [M]. Upper Saddle River:Prentice Hall, 1977.
GUNTURK B, LI X. Image Restoration: Fundamentals and Advances [M]. Florida:CRC Press, 2012.
CHAUDHURI S, VELMURUGAN R, RAMESHAN R. Blind Deconvolution Methods: A Review [M]. Blind Image Deconvolution: Springer International Publishing, 2014: 37-60.
CAI J F, DONG B, OSHER S, et al..Image restoration: total variation, wavelet frames, and beyond [J]. Journal of the American Mathematical Society, 2012, 25(4): 1033-1089.
SHAO K, ZOU Y, LIU Y, et al..Based on total variation regularization iterative blind image restoration algorithm [J]. Sensors & Transducers, 2014, 167(3):36-42.
JALOBEANU A, BLANC-FÉRAND L, ZERUBIA J. Satellite image deconvolution using complex wavelet packets [R]. INRIA, 2000.
WANG X Y, LIU Y C, YANG H Y. An efficient remote sensing image denoising method in extended discrete shearlet domain [J]. Journal of Mathematical Imaging and Vision, 2014, 49(2): 434-453.
MOSLEH A, LANGLOIS J M P, GREEN P. Image Deconvolution Ringing Artifact Detection and Removal via PSF Frequency Analysis [M]. Computer Vision-ECCV 2014. Springer International Publishing, 2014: 247-262.
WEN N, YANG S, ZHU C, et al.. Adaptive contourlet-wavelet iterative shrinkage/thresholding for remote sensing image restoration [J]. Journal of Zhejiang University Science, 2014(8): 664-674.
CHRISTOPOULOS C, SKODRAS A, EBRAHIMI T. The JPEG2000 still Image coding system: an overview [J]. IEEE Transactions on Consumer Electronics, 2000, 46(4): 1103-1127.
PETERS S M, KITAEFF V V. The Impact of JPEG2000 lossy compression on the scientific quality of radio astronomy imagery [J]. Astronomy and Computing, 2014(6): 1-51.
赵选民. 试验设计方法[M]. 北京:科学出版社, 2006. ZHAO X M. Experimental Design [M]. Beijing:Science Press, 2006.(in Chinese)
智喜洋, 张伟, 侯晴宇, 等. 影响测绘相机匹配精度的辐射指标量化[J]. 光学精密工程, 2012, 20(2): 387-394. ZHI X Y, ZHANG W, HOU Q Y, et al.. Quantification for radiometric specifications impacting on matching accuracy of mapping camera [J]. Opt. Precision Eng., 2012, 20(2): 387-394. (in Chinese)
0
浏览量
426
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构