浏览全部资源
扫码关注微信
西北农林科技大学 机械与电子工程学院, 陕西 杨凌,712100
收稿日期:2015-01-28,
修回日期:2015-03-13,
纸质出版日期:2015-06-25
移动端阅览
郭文川, 董金磊,. 高光谱成像结合人工神经网络无损检测桃的硬度[J]. 光学精密工程, 2015,23(6): 1530-1537
GUO Wen-chuan, DONG Jin-lei,. Nondestructive detection on firmness of peaches based on hyperspectral imaging and artificial neural networks[J]. Editorial Office of Optics and Precision Engineering, 2015,23(6): 1530-1537
郭文川, 董金磊,. 高光谱成像结合人工神经网络无损检测桃的硬度[J]. 光学精密工程, 2015,23(6): 1530-1537 DOI: 10.3788/OPE.20152306.1530.
GUO Wen-chuan, DONG Jin-lei,. Nondestructive detection on firmness of peaches based on hyperspectral imaging and artificial neural networks[J]. Editorial Office of Optics and Precision Engineering, 2015,23(6): 1530-1537 DOI: 10.3788/OPE.20152306.1530.
为无损检测桃的内部品质
提出了结合高光谱成像技术和人工神经网络无损检测桃硬度的方法.采集了摘后贮藏了12 d的140个桃在900~1 700 nm的高光谱图像
以每个桃高光谱图像中40 pixel×40 pixel的感兴趣区域的平均光谱作为桃的原始反射光谱;利用Savitzky-Golay平滑和标准正态变量变换对光谱进行预处理;基于
x-y
共生距离算法划分样本
得到校正集样本105个和预测集样本35个.利用连续投影算法、无信息变量消除法和正自适应加权算法从全光谱的216个波长中分别提取了12个、103个和22个特征波长;分别建立了基于全光谱和提取的特征波长预测桃硬度的支持向量机模型和BP网络模型.结果表明
基于全光谱建立的BP网络模型具有最好的预测性能
其预测相关系数为0.856
预测均方根误差为0.931.本研究为基于桃内部品质的工业化分级提供了基础.
To explore a nondestructive method to measure peach internal quality
a hyperspectral imaging technology combined with Artificial Neural Networks (ANN) was applied to evaluate the firmness of intact peaches. The hyperspectral images of 140 peaches during 12 day storage were acquired from 900 nm to 1 700 nm
and the average reflective spectrum of interest region of 40 pixel×40 pixel in each image was calculated and was used as the original spectra. The spectra were preprocessed by Savitzky-Golay smoothing and the standard normal variate. The sample set was partitioned based on joint
x-y
into calibration sets (105) and prediction sets (35). Then the successive projection algorithm
uninformative variable elimination method and competitive adaptive reweighted sampling method were used to select characteristic wavelengths by 12
103 and 22 from 216 wavelengths
respectively. A support vector machine and an error back propagation (BP) network model were established based on full spectra and selected characteristic wavelengths for predicting the firmness of intact peaches. The result shows that BP model based on full spectra has the best prediction performance with a correlation coefficient and a root-mean-square error of 0.856 and 0.931
respectively. This study offers the base for identifying internal qualities of peaches in industry.
毕金峰,阮卫红,刘璇,等. 桃汁贮藏期间的品质变化研究[J]. 现代食品科技,2014,30(7): 117-123. BI J F, RUAN W H, LIU X,et al.. The quality change of peach juice during storage [J]. Modern Food Science and Technology, 2014, 30(7): 117-123. (in Chinese)
朱伟兴,江辉,陈全胜. 特征波长筛选在近红外光谱测定梨硬度中的应用[J]. 农业工程学报,2010,26(8): 368-372. ZHU W X, JIANG H, CHEN Q SH. Application of characteristic wavelengths selection in determination of pear firmness by near infrared (NIR) spectroscopy [J].Transactions of the CSAE, 2010, 26(8): 368-372. (in Chinese)
刘卉,郭文川,岳绒. 猕猴桃硬度近红外漫反射光谱无损检测[J]. 农业机械学报,2011,42(3): 145-149. LIU H, GUO W CH, YUE R. Non-destructive detection of kiwifruit firmness based on near-infrared diffused spectroscopy [J].Transactions of the Chinese Society for Agricultural Machinery, 2011, 42(3): 145-149. (in Chinese)
赵强,张工力,陈星旦. 多元散射校正对近红外光谱分析定标模型的影响[J]. 光学 精密工程,2005,13(1): 53-58. ZHAO Q, ZHANG G L, CHEN X D. Effects of multiplicative scatter correction on a calibration model of near infrared spectral analysis [J].Opt. Precision Eng., 2005, 13(1): 53-58. (in Chinese)
MENDOZA F,LU R F,CEN H Y. Grading of apples based on firmness and soluble solids content using Vis/SWNIR spectroscopy and spectral scattering techniques[J]. Journal of Food Engineering, 2014, 125: 59-68.
曾一凡,刘春生,孙旭东,等. 可见/近红外光谱技术无损检测果实坚实度的研究[J]. 农业工程学报,2008,24(5): 250-252. ZENG Y F, LIU CH SH, SUN X D,et al.. Nondestructive measurement of firmness of pear using visible and near-infrared spectroscopy technique [J]. Transactions of the CASE, 2008, 24(5): 250-252. (in Chinese)
王加华,陈卓,李振茹,等. 洋梨硬度的便携式可见/近红外漫透射检测技术[J]. 农业机械学报,2010,41(11): 129-133. WANG J H, CHEN ZH, LI ZH R,et al.. Evaluation of european pear (Pyrus communis L. ) firmness based on portable Vis/NIR transmittance technique[J]. Transactions of the Chinese Society for Agricultural Machinery, 2010, 41(11): 129-133. (in Chinese)
FU X P,YING Y B,ZHOU Y,et al.. Application of NIR spectroscopy for firmness evaluation of peaches [J]. Journal of Zhejiang University Science B, 2008, 9(7): 552-557.
WANG S,HUANG M,ZHU Q B. Model fusion for prediction of apple firmness using hyperspectral scattering image [J]. Computers and Electronics in Agriculture, 2012, 80: 1-7.
ZHU Q B,HUANG M,ZHAO X,et al.. Wavelength selection of hyperspectral scattering image using new semi-supervised affinity propagation for prediction of firmness and soluble solid content in apples[J]. Food Analytical Methods, 2013, 6(1): 334-342.
徐爽,何建国,贺晓光,等. 基于高光谱技术的长枣内外品质同时检测[J]. 光电子·激光,2013,24(10): 1972-1976. XU SH, HE J G, HE X G,et al.. Simultaneous detection of external and internal quality parameters of long jujubes using hyperspectral imaging technology [J]. Journal of Optoelectronics · Laser, 2013, 24(10): 1972-1976. (in Chinese)
LEIVA-VALENZUELA G A,LU R F,AGUILERA J M. Prediction of firmness and soluble solids content of blueberries using hyperspectral reflectance imaging[J]. Journal of Food Engineering, 2013, 115(1): 91-98.
LU R F,PENG Y K. Hyperspectral scattering for assessing peach fruit firmness [J]. Biosystems Engineering, 2006, 93(2): 161-171.
LIU D Y,GUO W C. Identification of kiwifruits treated with exogenous plant growth regulator using near-infrared hyperspectral reflectance imaging[J]. Food Analytical Methods, 2015, 8: 164-172.
刘燕德,周延睿,彭彦颖. 基于近红外漫反射光谱检测鸡蛋品质[J]. 光学 精密工程,2013,21(1): 40-45. LIU Y D, ZHOU Y R, PENG Y Y. Detection of egg quality by near infrared diffuse reflectance spectroscopy [J]. Opt. Precision Eng., 2013, 21(1): 40-45. (in Chinese)
GALVÀO R K H,ARAUJO M C U,JOS G E,et al.. A method for calibration and validation subset partitioning [J]. Talanta, 2005, 67(4): 736-740.
展晓日,朱向荣,史新元,等. SPXY样本划分法及蒙特卡罗交叉验证结合近红外光谱用于橘叶中橙皮苷的含量测定[J]. 光谱学与光谱分析,2009,29(4): 964-968. ZHAN X R, ZHU X R, SHI X Y,et al.. Determination of hesperidin in tangerine leaf by near-infrared spectroscopy with SPXY algorithm for sample subset partitioning and monte carlo cross validation[J]. Spectroscopy and Spectral Analysis, 2009, 29(4): 964-968. (in Chinese)
商亮,谷静思,郭文川. 基于介电特性及ANN的油桃糖度无损检测方法[J]. 农业工程学报,2013,29(17): 257-264. SHANG L, GU J S, GUO W CH. Non-destructively detecting sugar content of nectarines based on dielectric properties and ANN [J]. Transactions of the CASE, 2013, 29(17): 257-264. (in Chinese)
郭文川,王铭海,谷静思,等. 近红外光谱结合极限学习机识别贮藏期的损伤猕猴桃[J]. 光学 精密工程,2013,21(10): 2720-2727. GUO W CH, WANG M H, GU J S, et al.. Identification of bruised kiwifruits during storage by near infrared spectroscopy and extreme learning machine [J]. Opt. Precision Eng., 2013, 21(10): 2720-2727. (in Chinese)
LI H D,LIANG Y Z,XU Q S,et al.. Key wavelengths screening using competitive adaptive reweighted sampling method for multivariate calibration[J]. Analytica Chimica Acta, 2009, 648(1): 77-84.
VAPNIK V N. Statistical Learning Theory [M]. New York: Wiley, 1998.
丁世飞,齐丙娟,谭红艳. 支持向量机理论与算法研究综述[J]. 电子科技大学学报,2011,40(1): 2-10. DING SH F, QI B J, TAN H Y. An review on theory and algorithm of support vector machines[J].Journal of University of Electronic Science and Technology of China, 2011, 40(1): 2-10. (in Chinese)
郭文川,王铭海,岳绒. 基于近红外漫反射光谱的损伤猕猴桃早期识别[J]. 农业机械学报,2013,44(2): 142-146. GUO W CH, WANG M H, YUE R. Early recognition of bruised kiwifruit based on near infrared diffuse reflectance spectroscopy [J].Transactions of the Chinese Society for Agricultural Machinery, 2013, 44(2): 142-146. (in Chinese)
KAMRUZZAMAN M,ElMASRY G,SUN D W,et al.. Prediction of some quality attributes of lamb meat using near-infrared hyperspectral imaging and multivariate analysis [J]. Analytica Chimica Acta, 2012, 714: 57-67.
林喜娜,王相友,丁莹. 双孢蘑菇远红外干燥神经网络预测模型建立[J]. 农业机械学报, 2010,41(5): 110-114. LIN X N, WANG X Y, DING Y. Experiment on neural network prediction modeling of far infrared radiation drying for Agaricus bisporus [J]. Transactions of the Chinese Society for Agricultural Machinery, 2010, 41(5): 110-114. (in Chinese)
0
浏览量
272
下载量
22
CSCD
关联资源
相关文章
相关作者
相关机构