浏览全部资源
扫码关注微信
1. 中国科学院 长春光学精密机械与物理研究所,吉林 长春,中国,130033
2. 长春工业大学 机电工程学院,吉林 长春,130012
收稿日期:2014-08-20,
修回日期:2014-10-15,
纸质出版日期:2015-06-25
移动端阅览
李志来, 徐宏, 关英俊. 1.5m口径空间相机主镜组件的结构设计[J]. 光学精密工程, 2015,23(6): 1635-1641
LI Zhi-lai, XU Hong, GUAN Ying-jun. Structural design of 1.5 m mirror subassembly for space camera[J]. Editorial Office of Optics and Precision Engineering, 2015,23(6): 1635-1641
李志来, 徐宏, 关英俊. 1.5m口径空间相机主镜组件的结构设计[J]. 光学精密工程, 2015,23(6): 1635-1641 DOI: 10.3788/OPE.20152306.1635.
LI Zhi-lai, XU Hong, GUAN Ying-jun. Structural design of 1.5 m mirror subassembly for space camera[J]. Editorial Office of Optics and Precision Engineering, 2015,23(6): 1635-1641 DOI: 10.3788/OPE.20152306.1635.
研究了1.5 m口径空间相机反射镜组件的结构
设计了主镜组件结构系统.采用RB-SiC作为反射镜镜坯材料
分析并优化了反射镜支撑形式和镜体的结构参数
得到了重131.9 kg
轻量化率达到81%的反射镜结构.在主镜基本构型确定的基础上
设计了主镜支撑结构
通过合理设计柔性卸载结构满足了主镜结构系统的力、热环境适应性和抗振性要求.最后
利用有限元法综合分析了主镜组件的性能.试验结果表明:主镜在1
g
重力作用下的面形精度RMS达到0.025
λ
(
λ
=632.8 nm)
(20±4)℃温变环境中主镜面形变化量在RMS 0.01
λ
范围内
主镜组件一阶固有频率为95.8 Hz
有限元分析结果的误差为4%.得到的结果表明主镜组件的静态刚度、动态刚度及热环境适应性完全满足设计指标要求.
The subassembly of a 1.5 m diameter primary mirror in a space camera was researched and the structure system of subassembly for the primary mirror was designed. RB-SiC was chosen as the material of the primary mirror
the lightweight design
support scheme and the structure design of the concrete support were analyzed
and a mirror structure with a mass of 131.9 kg and lightweight ratio of 81% was obtained. The support structure of the primary mirror was designed after determining the basic configuration of the primary mirror. Then
a flexible support structure was reasonably designed to adjust the force
thermal environment adaptability and vibration resistance. Finally
the Finite Element Method (FEM) was used to analyze the performance of the subassembly of the primary mirror synthetically. The experimental results show that the surface figure accuracy(Root Mean Square
RMS) of the primary mirror reaches 0.025
λ
(
λ
=632.8 nm)under the action of gravity of 1
g
and the changed scope is 0.01
λ
(RMS) in the (20±4) ℃ temperature environment. The first order natural frequency of the subassembly of the primary mirror is 95.8 Hz and the error obtained by the FEM is 4%. It demonstrates that the static stiffness
dynamic stiffness
and the thermal environment adaptability of the subassembly of the primary mirror have met the requirements of design criterion.
张学军,李志来,张忠玉. 基于SiC材料的空间相机非球面反射镜结构设计[J]. 红外与激光工程,2007,36(5):577-582. ZHANG X J, LI ZH L, ZHANG ZH Y. Space telescope aspherical mirror structure design based on SiC material [J]. Infrared and Laser Engineering, 2007,36(5):577-582. (in Chinese)
杨佳文,黄巧林. 大口径反射镜结构参数优化设计[J]. 中国空间科学技术,2011(4):77-83. YANG J W, HUANG Q L. Optimized design of structure parameters for large aperture mirrors [J].Chinese Space Sicence and Technology, 2011(4):77-83.(in Chinese)
续强,王延风,周虎,等. 空间光学遥感器主反射镜轻量化及支撑设计[J]. 应用光学,2007,28(1):43-46. XU Q, WANG Y F, ZHOU H, et al.. Design and analysis of lightweight structure and support for primary mirror of space optic remote sensor[J]. Journal of Applied Optics, 2007, 28(1): 43-46.(in Chinese)
郭万存,吴清文,杨近松,等. 2 m主镜主动支撑优化设计[J]. 红外与激光工程,2010,42(6):1480-1484. GUO W C, WU Q W, YANG J S, et al.. Optimum design of active supporting system for a 2 m primary mirror[J]. Infrared and laser engineering, 2013, 42(6): 1480-1484.(in Chinese)
张舸. 1.5 m量级SiC陶瓷素坯凝胶注模成型工艺[J]. 光学 精密工程,2013,21(12):2989-2993. ZHANG G. Gelcasting process of 1.5 m SiC ceramic green body [J].Opt. Precision Eng., 2013, 21(12): 2989-2993. (in Chinese)
宫辉,连华东. 大口径双拱形SiC反射镜背部构型初步研究[J]. 航天返回与遥感,2010,31(4):32-37. GONG H, LIAN H D. Preliminary study on backside structure of large-aperture double-arch SiC mirror[J]. Spacecraft recovery & remote sensing, 2010, 31(4): 32-37.(in Chinese)
陈晓丽,王彬,杨秉新. 大口径超轻型反射镜定位和支撑方案研究[J]. 航天返回与遥感,2010,31(3):15-20. CHEN X L, WANG B, YANG B X. Study of positioning and mounting scheme of large aperture ultra-light space reflector [J]. Spacecraft recovery & remote sensing, 2010, 31(3): 15-20.(in Chinese)
刘书田,胡瑞,周平,等. 基于筋板式基结构的大口径空间反射镜构型设计的拓扑优化方法[J]. 光学 精密工程,2013,21(7):1803-1810. LIU SH T, HU R, ZHOU P,et al.. Topologic optimization for configuration design of web-skin-type ground structure based large-aperture space mirror [J]. Opt. Precision Eng., 2013, 21(7): 1803-1810. (in Chinese)
MATTHIAS R K, PETER H. Ultra-lightweighted HB-Cesic© one-meter mirror demonstrator [C]. SPIE,7739, 2010:77392K-1-8.
FRIEDMAN E. Photonics Rules of Thumb [M]. New York: McGraw Hill, 2003.
ARNOLD L. Optimized axial support topologies for thin telescope mirrors [J].Optical Engineering, 1995, 34(2): 567-574.
YODER P. Opto-mechanical Systems Design [M]. 2nd ed. New York: Marcel Dekker Inc., 1993.
0
浏览量
230
下载量
16
CSCD
关联资源
相关文章
相关作者
相关机构