浏览全部资源
扫码关注微信
1. 北京交通大学 机械与电子控制工程学院 北京,100044
2. 北京宇航系统工程研究所 北京,100076
收稿日期:2015-01-21,
修回日期:2015-03-11,
纸质出版日期:2015-06-25
移动端阅览
黄铁球, 莫怡华, 王江. 翼展直线旋转作动机构的最速展开曲线[J]. 光学精密工程, 2015,23(6): 1642-1649
HUANG Tie-qiu, MO Yi-hua, WANG Jiang. Quickest deployable curve of linear-rotary actuator[J]. Editorial Office of Optics and Precision Engineering, 2015,23(6): 1642-1649
黄铁球, 莫怡华, 王江. 翼展直线旋转作动机构的最速展开曲线[J]. 光学精密工程, 2015,23(6): 1642-1649 DOI: 10.3788/OPE.20152306.1642.
HUANG Tie-qiu, MO Yi-hua, WANG Jiang. Quickest deployable curve of linear-rotary actuator[J]. Editorial Office of Optics and Precision Engineering, 2015,23(6): 1642-1649 DOI: 10.3788/OPE.20152306.1642.
研究了高速飞行器侧翼展开机构直线旋转作动器的最速展开问题.采用变分方法
推导了最速展开槽线方程
建立了直线旋转作动器的平面等效运动模型.推导的最速展开槽线方程虽与摆线方程近似
但不同于以往任意一类摆线方程及其变种
命名其为缩放摆线.给出了缩放摆线方程的一些基本特性并推导了基于该曲线方程的最速展开时间计算公式;采用MSC.Adams运动仿真软件
对缩放摆线方程和展开时间进行了动力学仿真验证
仿真结果与理论计算吻合.与标准摆线展开时间的对比研究显示
当缩放系数大于1时
缩放摆线展开时间与标准线无明显提升
但在缩放系数小于1的区间
随着缩放系数的减小
展开时间的缩短非常明显.当缩放系数为0.24时
缩放摆线展开时间仅为原标准摆线的87%.
The quickest deploying of a linear-rotary actuator for wing deployment in a fast air vehicle was explored. The quickest deployable equation was deduced by using the variational method
and a planar equivalent motion model for the linear-rotary actuator was established. The quickest deployable equation is a new kind of curve named by scaled-cycloid here
which is similar to the cycloid curve
but is not any kind of curve from the former research. Some basic characteristics of the scaled-cycloid were studied and the quickest deploying time was calculated. The MSC.Adams software was used to simulate the scaled-cycloid equation and deploying time
and simulation results are well coincident with that of the theoretical analysis. The comparison results with that of cycloid curve show there is no obvious difference of the deployment time between standard cycloid and scaled-cycloid when scaled coefficient (
k
C
) is large than 1
but the deployment time decreases quickly with the decreasing of scaled coefficient when
k
C
is less than 1. The deployment time of scaled-cycloid is just 87% of standard cycloid when the
k
C
decreases to 0.24.
金光,谢晓光,古松,等. 卫星太阳帆板展开的动力学仿真分析与应用[J]. 光学 精密工程,2014,22(3):745-753. JIN G,XIE X G,GU S,et al.. Dynamic simulation and application of deployable mechanism of satellite solar panels [J]. Opt. Precision Eng., 2014,22(3):745-753.(in Chinese)
樊金柱, 王卫英, 徐荣华,等. 双螺旋副直旋作动器[J]. 轻工机械, 2013, 31(2):29-31. FAN J ZH, WANG W Y, XU R H. Double helix straight-rotary actuator[J]. Light Industry Machinery, 2013, 31(2):29-31.(in Chinese)
胡明, 黎德蓓, 陈文华, 等. 空间凸轮-螺旋组合式折叠翼面展开机构设计及其运动特性分析[J]. 中国机械工程, 2012, 23(012): 1475-1478. HU M, LI D B, CHEN W H, et al.. Design and kinematic characteristics analysis oil space cam-helix deployable mechanism of folding missile wing[J]. China Mechanical Engineering, 2012,23(012):1475-1478.(in Chinese)
刘源,董立珉,孔宪仁,等. 飞行器虚拟振动试验平台构建[J]. 光学 精密工程,2013,21(5):1258-1264. LIU Y,DONG L M,KONG X R,et al.. Construction of virtual vibration testing platform for Spacecraft [J]. Opt. Precision Eng., 2013,21(5):1258-1264.(in Chinese)
刘彦,谭久彬,王雷. 差动电磁作动器的超大型光学仪器隔振基础的主动控制机理[J]. 光学 精密工程,2007,15(10):1602-1607. LIU Y,TAN J B,WANG L. Control mechanism based on differential electromagnet actuator for a room-sized optical instrument vibration isolation foundation[J]. Opt. Precision Eng., 2007,15(10):1602-1607.(in Chinese)
梁锡昌, 王光建, 郑小光. 基于螺旋机构的旋转作动器研究[J]. 航空学报, 2003,24(3):282-285. LIANG X CH,WANG G J,ZHENG X G. Research on rotary actuator based on screw device [J]. Acta Aeronautica et Astronautica Sinica, 2003,24(3):282-285.(in Chinese)
黄鏊,唐金兰,王占利,等. 燃气活塞式弹翼展开动力系统内弹道性能分析[J]. 弹箭与制导学报,2009,29(4):143-146. HUANG Y,TANG J L,WANG ZH L,et al.. Analysis on internal balustic property of gas piston missile wing expanding propulsion system[J]. JournaI of Projectiles, Rockets, Missiles and Guidance, 2009,29(4):143-146.(in Chinese)
NISHIYAMA Y. The brachistochrone curve: the problem of quickest descent [J]. International Journal of Pure and Applied Mathematics, 2013, 82(3): 409-419.
FUENTES H E. On generalized cycloids [J]. International Journal of Mathematical Education in Science and Technology, 1994, 25(1): 45-54.
FUENTES H E. Total generalization of the cycloid [J]. International Journal of Mathematical Education in Science and Technology, 1997, 28(2): 243-247.
DETEMPLE D W. The generalized polygonal cycloid [J]. College Mathematics Journal, 1988: 417-419.
HALL L, WAGON S. Roads and wheels [J]. Mathematics Magazine, 1992: 283-301.
MATSUURA T, MATSUYAMA T, TANDA S. Cycloid crystals by topology change [J]. Journal of Crystal Growth, 2013, 371: 17-22.
CHEN B K, ZHONG H. Generation and investigation of a new cycloid drive with double contact [J]. Mechanism and Machine Theory, 2012,49: 270-283.
LEGEZA V P. Quickest-descent curve in the problem of rolling of a homogeneous cylinder [J]. International Applied Mechanics, 2008,44(12):1430-1436.
LI K J, DING Y J. The application of the quickest-descent method to the analysis of the Hα line in loops [J]. Solar Physics,1994,150(1-2):87-97.
HIRANO Y. Quickest descent line during alpine ski racing [J]. Sports Engineering,2006,9(4):221-228.
0
浏览量
656
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构