浏览全部资源
扫码关注微信
1. 南京信息工程大学 江苏省大气环境与装备技术协同创新中心,江苏 南京,210044
2. 中国科学院 紫金山天文台,江苏 南京,210008
收稿日期:2015-01-20,
修回日期:2015-02-25,
纸质出版日期:2015-06-25
移动端阅览
周旺平, 刘文, 刘伟. 斜轴式天文望远镜机架的驱动控制[J]. 光学精密工程, 2015,23(6): 1664-1672
ZHOU Wang-ping, LIU Wen, LIU Wei. Driving control for mounting rack of slant axis astronomical telescopes[J]. Editorial Office of Optics and Precision Engineering, 2015,23(6): 1664-1672
周旺平, 刘文, 刘伟. 斜轴式天文望远镜机架的驱动控制[J]. 光学精密工程, 2015,23(6): 1664-1672 DOI: 10.3788/OPE.20152306.1664.
ZHOU Wang-ping, LIU Wen, LIU Wei. Driving control for mounting rack of slant axis astronomical telescopes[J]. Editorial Office of Optics and Precision Engineering, 2015,23(6): 1664-1672 DOI: 10.3788/OPE.20152306.1664.
针对斜轴式天文望远镜传统机架中的非垂直轴系结构会导致像场旋转
从而影响天文望远镜指向和跟踪控制的问题
研发了新的45°斜轴式天文望远镜机架.设计时
选取太阳为跟踪目标来搭建硬件机架驱动控制系统;利用图像传感器实时捕获目标
经数字信号处理(DSP)芯片精确解析目标质心
通过图像消旋解耦出方位与斜轴两方向的偏差.然后
结合模糊控制与神经网络的各自特点
设计了单神经元模糊自适应PID控制算法实施偏差调节
以实现对目标的定位与跟踪.实验结果显示
该驱动控制系统的水平与斜轴方位的跟踪偏移误差均在±2 pixel以内
水平指向偏移误差均值为0.123 2°
俯仰指向偏移误差均值为0.155 3°.得到的结果表明该驱动系统鲁棒性强
能够克服斜轴机架像场旋转导致的控制问题且满足精度要求.
The non-vertical structure in traditional mounting rack of a slant axis astronomical telescope may cause an image field rotation
which will effect the pointing and tracking of the telescope. There fore
a mounting rack with a slant axis of 45° is developed. By selecting the sun as the tracking target
a hardware driving control system for the mounting rack is designed. Capturing the target by a camera in real time
the system uses Digital Signal Processors(DSPs) here for analyzing exactly the centroid position of target image and decouples the deviation between the two directions by image despun scheme. Combined the fuzzy control and neural network
a self-adaptive fuzzy PID approach with a single neuron is proposed for regulating the position errors of the slant and azimuth respectively to achieve tracking and positioning. The experimental results show that the horizontal and slant axis azimuth tracking bias errors are within 2 pixels
and the average tracking error is 0.123 2° for the horizontal orientation and 0.155 3° for the vertical direction respectively. Experimental results indicate that the driving system is very robust. It solves the control problem caused by image rotations and can meet the precision requirement.
杨世海,王国民. 天文光学望远镜摩擦驱动滑移动态检测与修正[J]. 光学 精密工程, 2013,21(8): 2056-2063. YANG SH H, WANG G M. Detection andcorrection of slippage from friction drive for astronomical optical telescope [J]. Opt. Precision Eng., 2013, 21(8): 2056-2063. (in Chinese)
孙航,张海波,曹立华,等. 大口径光电探测设备主镜晃动的误差补偿[J]. 光学 精密工程, 2014,22(1):85-91. SUN H, ZHANG H B, CAO L H, et al.. Error compensation for primary mirror shaking of large aperture optical detection equipment [J]. Opt. Precision Eng., 2014, 22(1): 85-91. (in Chinese)
周旺平, 徐欣圻. 大型天文光学望远镜机架驱动高阶滑模控制仿真[J]. 系统仿真学报, 2008, 20(13): 3487-3491. ZHOU W P, XU X Q. Higher order sliding mode simulation for mount driving of large optical astronomical telescopes [J]. Journal of System Simulation, 2008, 20(13):3487-3491. (in Chinese)
赵勇志. 4 m级地基光电望远镜跟踪架结构研究[D]. 北京: 中国科学院, 2011. ZHAO Y ZH. Research on the four meters ground-based electro-optical telescope mount [D]. Beijing: Graduate University of the Chinese Academy of Sciences, 2011. (in Chinese)
柳光乾. 云台红外太阳望远镜驱动控制系统仿真[D]. 北京: 中国科学院, 2004. LIU G Q. The simulation for the control system of Yun Nan Solar Telescope [D]. Beijing: Graduate University of Chinese Academy of Sciences, 2004.(in Chinese)
LEMKE R, KÄRCHER H J, NOETHE L. Telescope positioning and drive system based on magnetic bearings, technical challenges and possible applications in optical stellar interferometry[C].SPIE Astronomical Telescopes+ Instrumentation. International Society for Optics and Photonics, 2012: 844440-1-8.
YANG J, ZUO Y X, LOU Z, et al.. Conceptual design studies of the 5 m terahertz antenna for Dome A, Antarctica [J]. Research in Astronomy and Astrophysics, 2013, 13(12): 1493-1508.
王红睿,王玉鹏,方伟. 智能双模式太阳跟踪器[J]. 光学 精密工程, 2011,19(7):1605-1611. WANG H R, WANG Y P, FANG W. Intelligent solar tracker with double modes [J]. Opt. Precision Eng., 2011, 19(7): 1605-1611. (in Chinese)
乔培玉,何昕,魏仲慧. 加权整体最小二乘法在光学自准直法测量挠曲角中的应用[J]. 光学 精密工程, 2012,20(9):1953-1959. QIAO P Y, HE X, WEI ZH H. Application of weighted total least squares in measurement of deflection angle with optical self-collimation method [J]. Opt. Precision Eng., 2012,20(9): 1953-1959.(in Chinese)
陈阔,冯华君,徐之海,等. 亚像素精度的行星中心定位算法[J]. 光学 精密工程, 2013,21(7):1881-1890. CHEN K, FENG H J, XU ZH H, et al.. Sub-pixel location algorithm for planetary center measurement [J]. Opt. Precision Eng., 2013, 21(7):1881-1890. (in Chinese)
章毓晋. 图像处理和分析教程[M]. 北京:人民邮电出版社,2009. ZHANG Y J.A Course of Image Processing and Analysis [M]. Beijing: Posts and Telecom Press, 2009. (in Chinese)
CHEN W B, ZENG G H, ZOU H J, et al.. Study of a single neuron fuzzy PID DC motor control method [C]. Intelligent System Design and Engineering Application, IEEE Conference, 2012: 1125-1128.
朱丹丹. 基于单神经元的望远镜伺服控制系统研究[D]. 北京:中国科学院, 2011. ZHU D D. Study on the servo control system of telescope based on the single neuron [D]. Beijing: Graduate University of Chinese Academy of Sciences, 2011.(in Chinese)
0
浏览量
531
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构