浏览全部资源
扫码关注微信
北京工业大学 激光工程研究院 北京,100124
收稿日期:2014-10-15,
修回日期:2014-12-03,
纸质出版日期:2015-06-25
移动端阅览
闫岸如, 杨恬恬, 王燕灵等. 变能量激光选区熔化IN718镍基超合金的成形工艺及高温机械性能[J]. 光学精密工程, 2015,23(6): 1695-1704
Yan An-ru, Yang Tian-tian, Wang Yan-ling etc. Forming process and high-temperature mechanical properties of variable energy laser selective melting manufacturing IN718 superalloy[J]. Editorial Office of Optics and Precision Engineering, 2015,23(6): 1695-1704
闫岸如, 杨恬恬, 王燕灵等. 变能量激光选区熔化IN718镍基超合金的成形工艺及高温机械性能[J]. 光学精密工程, 2015,23(6): 1695-1704 DOI: 10.3788/OPE.20152306.1695.
Yan An-ru, Yang Tian-tian, Wang Yan-ling etc. Forming process and high-temperature mechanical properties of variable energy laser selective melting manufacturing IN718 superalloy[J]. Editorial Office of Optics and Precision Engineering, 2015,23(6): 1695-1704 DOI: 10.3788/OPE.20152306.1695.
开展了基于激光选区熔化技术对IN718镍基超合金直接激光熔化成形的研究.将零件分为心部与轮廓区
通过改变激光线输入量进行选区熔化研究.首先
建立熔池内烧结的数值模型
改变激光线输入量
获得了激光线输入量对零件致密度的影响规律并观察了成形体中的组织生长.然后
增加轮廓部位扫描
改变激光线输入量与扫描顺序
获得其对零件表面质量的影响规律.最后
通过优化热处理工艺提高零件高温拉伸强度和高温持久性能.试验结果表明
在激光线输入量为300 J/m时
成形体致密度最高
为98.9%
成形体沿层间方向组织为树枝晶加等轴晶
在层内方向组织为等轴晶.采用心部+后轮廓扫描的方式
轮廓激光线输入量为100 J/m时表面质量最优
粗糙度为3.1 μm.对成形体采用1 065 ℃固溶+双时效的热处理可以获得最佳高温性能组合
高温拉伸强度为1 356 MPa
高温持久时间为34 h.结果显示
通过激光选区熔化制作IN718镍基超合金可以满足航空结构件对致密度、表面质量和高温性能要求.
Selective laser melting manufacturing IN718 powder with changed laser energy densities was researched. The part to be machined was divided into a core and a contour
and the selective laser melting manufacturing was performed by changing the laser energy density. Firstly
a numerical model of sintering in melting pool was set up
the influencing factors of changed laser energy densities on the densification of the part were obtained by changing laser energy densities
and the microstructure features of the formed part were observed. Then
by increasing scanning for the contour and changing the laser energy densities
the effect law of changed laser energy densities on the surface quality of the part was also obtained. Finally
the heat treatment processing was optimized and the high-temperature tensile strength and high temperature lasting time properties of the part were improved to obtain the perfect surface quality. The results indicate when the linear laser energy density is 300 J/m
the optimal densification level of formed part is as high as 98.9%. In this condition
the typical microstructures of the formed part are dendrite and equiaxial crystals along the deposition direction and are equiaxial crystal along the inside layer. Using the core + contour scanning way
the optimal surface quality of the part is obtained in laser energy densities of 100 J/m with the roughness of 3.1 μm. The optimal high temperature performance of the formed part is realized by solution + double aging combination in 1 065 ℃
in which the high temperature tensile strength is 1 356 MPa and the high temperature lasting time is 34 h. Results show that the IN718 nickel-based super alloy manufactured by selective laser melting can satisfy the demands of complex aerospace parts for the densfication level
good forming quality and high-temperature mechanical properties.
DADBAKHSH S, HAO L. Effect of Al alloys on selective laser melting behaviour and microstructure of in situ formed particle reinforced composites [J]. Journal of Alloys and Compounds,2012,514(30):328-334.
SONG B, DONG SH J,CODDET P,et al.. Microstructure and tensile behavior of hybrid nano-micro SiC reinforced iron matrix composites produced by selective laser melting [J]. Journal of Alloys and Compounds,2013,579(10):415-421.
VRANCKEN B, THIJS L, KRUTH J P.Heat treatment of Ti6Al4V produced by Selective Laser Melting: microstructure and mechanical properties [J]. Journal of Alloys and Compounds, 2012, 541(22):177-185.
ZHANG B CH, FENINECHE NE, LIAO H L. Microstructure and magnetic properties of Fe/Ni alloy fabricated by selective laser melting Fe/Ni mixed powders[J].Journal of Materials Science and Technology,Shenyang,2013,29(8): 757-760.
AHMAD M, AKHTER J I, SHAHZAD M,et al.. Cracking during solidification of diffusion bonded Inconel 625 in the presence of Zircaloy-4 interlayer [J]. Journal of Alloys and Compounds,2008,457(1-2): 131-134.
MUDGE R P,WAID N R.Laser engineered shaping advances additive manufacturing and repair [J].Welding Journal,2007,86(1):478-85.
DAS M,BALLA V K,BASU D,et al..Laser processing of SiC particle reinforced coating on titanium [J].Scripa Materialia, 2010,63(4):438-41.
YAN H,ZHANG P L,YU Z S.Development and characterization of laser surface cladding (Ti,W)C reinforced Ni-30Cu alloy composite coating on copper [J].Optics and Laser Technology, 2012,44(5):1351-8.
CAM G,KOCAK M.Progress in joining of advanced materials [J].International Materials Reviews,1998,43:1-44.
GU D D,MEINERS W,WISSENBANCH K,et al..Laser additive manufaturing of metallic components:materials,processes and mechanisms [J].International Materials Reviews, 2012,57:133-164.
HUANG W D,LI Y M.Laser solid forming of metal powder matarials [J].Journal of Materials Engineering,2002,3:40-3.
PENG L,TAIPING Y,SHENG L,et al..Direct laser fabricating of laser alloy samples [J].International Journal of Machine Tools and Manufacture,2005,45(11):1288-1294.
DINDA G P,DASGUPTA A K,MAZUMDER J.Texture control during laser deposition of nickel-based superalloy [J].Scripta Materialia,2012,67(5):503-506.
王华明. 金属材料激光表面改性与高性能金属零件激光快速成形技术研究进展[J]. 航空学报,2002,23(5):473-478. WANG H M.Research progress on laser surface modifications of metallic materials and laser rapid forming of high performance metallic components [J].Acta Aeronautica et Astronau Tica Sinica, 2002,23(5):473-478.(in Chinese)
LIU F,LIN X,YANG G,et al..Recrystallization and its influence on microstructures and mechanical properties of laser solid formed nickel base superalloy Inconel 718[J].Rare Metals.,2011,30(1):433-438.
吴伟辉,杨永强,来克娴. 选区激光熔化快速成型过程分析[J]. 华南理工大学学报,2007,35(3):22-27. WU W H,YANG Y Q,LAI K X.Process analysis of rapid protyping with selective laser melting [J].Journal of South China University of Technology, 2007,35(3):22-27.(in Chinese)
JIA Q B, GU D D.Selective laser melting additive manufacturing of Inconel 718 superalloy parts:Desifiction,microstructure and properties [J].Journal Alloys and Compounds,2014,585(6):713-721.
张剑锋. Ni基金属粉末激光直接烧结成形及关键技术研究[D].南京:南京航空航天大学,2002. ZHANG J F.Study on direct selective laser sintering of Ni-based metallic powder and key technologies[D].Nanjing:Nanjing University of Aeronautics and Astronautics,2002.(in Chinese)
LIU F CH,LIN X,SONG M H,et al..Effect of intermediate heat treatment temperature on microstructure and notch sensitivity of laser solid formed Inconel 718 superalloy[J]. Journal of Wuhan University of Technology-Mater, 2011,26(5):908-913.
ZHAO X M, CHEN J, LIN X,et al..Study on microstructure and mechanical properties of laser rapid forming Inconel 718 [J].Materials Science and Engineering A,2008,478(1-2):119-124.
DAVIS NIKEL J R.Cobalt,and Their Alloys[M].USA:ASM International,Metals Park,OH,2000.
MATTHEW J. Donachie.Superalloys-A technical guide[M].USA:ASM International,Metals Park,OH,2002.
WEI X P,ZHENG W J,SONG ZH G.Elemental partitioning characteristics of equilibrium phases in inconel 718 Alloy at 600-1 100℃ [J].Journal of Iron and Steel Research,2013,20(6):88-94.
JIA Q B, GU D D.Selective laser melting additive manufactured Inconel 718 superalloy parts: High-temperature oxidation property and its mechanisms [J].Optics & Laser Technology,2014,62(10):161-171.
0
浏览量
299
下载量
11
CSCD
关联资源
相关文章
相关作者
相关机构