浏览全部资源
扫码关注微信
1. 中国科学院 长春光学精密机械与物理研究所,吉林 长春,中国,130033
2. 中国科学院大学 北京,中国,100049
3. 中国科学院 苏州生物医学工程技术研究所,江苏 苏州,中国,215163
收稿日期:2014-08-04,
修回日期:2014-09-30,
纸质出版日期:2015-06-25
移动端阅览
李铭, 郑健, 章程等. 应用变权全变分重建抑制CT金属伪影[J]. 光学精密工程, 2015,23(6): 1714-1721
LI Ming, ZHENG Jian, ZHANG Cheng etc. Suppression of metal artifact in computed tomography by reweighted total variation reconstruction[J]. Editorial Office of Optics and Precision Engineering, 2015,23(6): 1714-1721
李铭, 郑健, 章程等. 应用变权全变分重建抑制CT金属伪影[J]. 光学精密工程, 2015,23(6): 1714-1721 DOI: 10.3788/OPE.20152306.1714.
LI Ming, ZHENG Jian, ZHANG Cheng etc. Suppression of metal artifact in computed tomography by reweighted total variation reconstruction[J]. Editorial Office of Optics and Precision Engineering, 2015,23(6): 1714-1721 DOI: 10.3788/OPE.20152306.1714.
提出一种基于变权全变分(RWTV )迭代重建的金属伪影校正算法以抑制CT系统重建图像中出现的金属伪影.该算法应用自定义的权值函数对全变分模型做加权惩罚
生成权值全变分模型;通过交替解权值全变分最小化过程和更新权值步骤实现变权全变分重建算法.应用该算法对数值模型和临床图像前向投影生成的投影数据分别进行了重建实验.数值模型实验结果表明:在60个采样角度下
用提出算法重建的图像具有最高的空间分辨率特性;且信噪比值较平滑插值金属伪影校正算法、全变分约束最优化算法的重建结果分别高出17.523 6和 7.145 2 dB.临床数据实验结果表明:该算法重建结果有效抑制了CT金属伪影
清晰重建出颅骨内的细节解剖结构
极大提高了重建图像的质量.
A novel metal artifact reduction algorithm based on a Reweighted Total Variation (RWTV) reconstruction was proposed to suppress the metal artifacts in Computed Tomography (CT) images to improve the image quality. A user-defined weight function was used as penalty weight to generate the weighted Total Variation(TV) model. The reweighted TV reconstruction algorithm was implemented through solving alternately the weighted TV minimization problem and updating the weight procedure. Then
the algorithm was used in the reconstruction experiments for projections from forward projecting phantom and clinical data respectively. The digital phantom experiments show that the proposed algorithm has the topmost spatial resolution of reconstructed images in 60 sampling angles. Furthermore
the signal-to-noise ratios of images through the proposed algorithm are 17.523 6
7.145 2 dB higher than those of images reconstructed by Smooth Interpolation Metal Artifact Reduction (SI-MAR) algorithm and TV minimization based on Constrained Optimization-Penalized Smoothness (CO-PS) algorithm respectively. Clinical experimental results demonstrate that the proposed algorithm successfully suppresses the metal artifacts and clearly restores the anatomical structure in the skull. Moreover
the quality of reconstructed images has been greatly improved by the proposed metal artifact suppression algorithm.
ROBERTSON D D, WEISS P J, FISHMAN E K, et al.. Evaluation of CT techniques for reducing artifacts in the presence of metallic orthopedic implants [J]. Journal of Computer Assisted Tomography, 1988, 12 (2): 236-241.
KALENDER W A, HEBEL R, EBERSBERGER J.Reduction of CT artifacts caused by metallic implants [J]. Radiology, 1987, 164(2): 576-577.
ZHAO S,ROBERTSON D D, GE W, et al.. X-ray CT metal artifact reduction using wavelets: An application for imaging total hip prostheses [J]. IEEE Transactions on Medical Imaging, 2000, 19(12): 1238-1247.
林宙辰,石青云. 用四次多项式插值消除医用X射线CT中的金属伪影[J]. 中国图象图形学报,2001, 6(2): 142-147. LIN ZH CH, SHI Q Y. Reduction of metal artifact in X-ray CT by quartic-polynomial interpolation [J]. Journal of Image and Graphics, 2001, 6(2): 142-147.(in Chinese)
WOUTER J H V, RAOUL M S J, AART J M, et al.. Development and validation of segmentation and interpolation techniques in sinograms for metal artifact suppression in CT [J]. Medical Physics, 2010, 37(2):620-628.
GE W, DONALD L S, JOSEPH A S, et al.. Iterative deblurring for CT metal artifact reduction[J]. IEEE Transactions on Medical Imaging, 1996, 15(5): 657-664.
ZHANG X M, WANG J, XIN L. Metal artifact reduction in X-ray Computed Tomography (CT) by constrained optimization [J]. Medical Physics, 2011, 38(2):701-711.
SIDKY E Y, PAN X. Image reconstruction in circular cone-beam computed tomography by constrained, total-variation minimization [J]. Physics in Medicine and Biology, 2008, 53(17): 4777-4807.
杨宏成,高欣,张涛. 应用投影收缩的压缩感知锥束CT短扫描重建[J]. 光学 精密工程,2014,22(3):770-778. YANG H CH, GAO X, ZHANG T.Compressing-sensing cone-beam CT short-scan reconstruction based on projection-contraction [J]. Opt. Precision Eng., 2014,22(3):770-778. (in Chinese)
张砚,汪源源,李伟,等. 基于全变分法重建光声图像[J]. 光学 精密工程,2012, 20(1):204-212. ZHANG Y, WANG Y Y, LI W, et al.. Reconstruction of photoacoustic image based on total variation [J]. Opt. Precision Eng., 2012, 20(1):204-212. (in Chinese)
ZHANG Y B, MOU X Q, YAN H. Weighted total variation constrained reconstruction for reduction of metal artifact in CT [C]. 2010 IEEE Nuclear Science Symposium Conference Record, Knoxville, TN, 2010:2630-2634.
ZHEN T, XUN J, KEHONG. Y, et al.. Low-dose CT reconstruction via edge-preserving total variation regularization [J]. Physics in Medicine and Biology, 2011, 56(18):5949-5967.
DONOHO D L. Compressed sensing [J]. IEEE Transactions on Information Theory, 2006, 52(4):1289-1306.
CANDES E J, ROMBERG J K, TAO T. Stable signal recovery from incomplete and inaccurate measurements [J]. Communications on pure and applied mathematics, 2006, 59(8):1207-1223.
李铭,张涛,郑健,等. 基于切线反投影的CT金属位置和形状标定[J]. 液晶与显示,2013, 28(2):295-299. LI M, ZHANG T, ZHENG J, et al.. Determination of location and shape of metallic object in CT based on tangent back-projection[J]. Chinese Journal of Liquid Crystals and Displays, 2013, 28(2):295-299. (in Chinese)
STEPHEN B, LIEVEN V.Convex Optimization [M]. Cambridge:Cambridge University Press, 2004, Chapter 5:241-249.
EMMANUEL J C, MICHAEL B W, STEPHEN P B. Enhancing sparsity by reweighted l1 minimization [J]. J. Fourier Anal. Appl., 2008, 14:877-905.
PATRICK J L R, JUNGUO B, PHILLIP A V. Penalized-Likelihood sinogram restoration for computed tomography [J]. IEEE Transactions on Medical Imaging, 2006, 25(8):1022-1036.
0
浏览量
299
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构