浏览全部资源
扫码关注微信
1. 哈尔滨工业大学 电气工程及自动化学院,黑龙江 哈尔滨,150001
2. 哈尔滨工程大学 自动化学院,黑龙江 哈尔滨,150001
3. 哈尔滨工程大学 信息与通信工程学院,黑龙江 哈尔滨,150001
4. 中国电子科技集团公司第49研究所,黑龙江 哈尔滨,150001
5. 中国船舶重工集团公司第703研究所,黑龙江 哈尔滨,150001
收稿日期:2014-12-30,
修回日期:2015-01-22,
纸质出版日期:2015-06-25
移动端阅览
王冰, 张洪泉, 宋凯等. 多传感器集成氢气检测系统的知识推送故障诊断[J]. 光学精密工程, 2015,23(6): 1742-1748
WANG Bing, ZHANG Hong-quan, SONG Kai etc. Fault diagnosis based on knowledge pushing in multi-sensor integration hydrogen detection system[J]. Editorial Office of Optics and Precision Engineering, 2015,23(6): 1742-1748
王冰, 张洪泉, 宋凯等. 多传感器集成氢气检测系统的知识推送故障诊断[J]. 光学精密工程, 2015,23(6): 1742-1748 DOI: 10.3788/OPE.20152306.1742.
WANG Bing, ZHANG Hong-quan, SONG Kai etc. Fault diagnosis based on knowledge pushing in multi-sensor integration hydrogen detection system[J]. Editorial Office of Optics and Precision Engineering, 2015,23(6): 1742-1748 DOI: 10.3788/OPE.20152306.1742.
针对现有多传感器集成氢气检测系统不能对自身工作状态进行诊断的缺点
对基于知识的故障诊断专家系统进行了分析
提出了一种基于知识管理和知识主动推送的故障诊断方法.对提出的用于多传感器集成氢气检测系统故障诊断的主要层次结构进行了研究.根据专家系统的基本原理介绍了基于知识推送的专家系统的总体结构.分析了系统故障模式
讨论了故障诊断单元知识库的设计方法.建立了知识主动推送的推理机构模型
给出了其推理方法和步骤.最后
给出了基于知识推送的多传感器集成氢气检测系统故障诊断单元的设计方法.实验结果表明:本方法的故障诊断准确率可达到97%以上
验证了该方法的有效性.提出的方法能够主动将知识在适当的时候传递给决策者
提高了故障诊断的速度和准确度.
As multi-sensor integration hydrogen detection systems can not diagnose the working state by itself
an expert system of fault diagnosis based on knowledge was analyzed and a fault diagnosis method based on knowledge management and knowledge pushing was proposed. The hierarchical structure of the fault diagnosis method used in the multi-sensor integration hydrogen detection system was investigated. On the basis of the principle of expert systems
the texture of expert system based on knowledge pushing actively was presented. After the fault modes were analyzed
a knowledge base fault diagnosis design was discussed. Then the method and step of inference engine based on knowledge pushing actively were researched by its established model. Finally
the fault diagnosis unit for multi-sensor integration hydrogen detection system based on knowledge pushing was designed. Experimental results indicate that the fault diagnosis accuracy rate of the proposed method reaches above 97%
which verifies the effectiveness of the method. It can transfer initiatively the knowledge to the decision-maker at opportune moment
and improve the speed and accuracy rate of fault diagnosis.
黄斌,陈世静,张文伟,等. 气浮式测力传感器静特性的影响因素[J]. 光学 精密工程,2014, 22(2): 390-396. HUANG B, CHEN SH J, ZHANG W W, et al.. Influence factors on static characteristics of flotation force transducers [J]. Opt. Precision Eng., 2014, 22(2): 390-396. (in Chinese)
郑高峰, 何广奇, 刘海燕,等. 电纺氧化锌纳米纤维乙醇、丙酮气敏传感器[J]. 光学 精密工程,2014, 22(6): 1555-1561. ZHENG G F, HE G Q, LIU H Y, et al.. Electrospun zinc oxide nanofibrous gas sensors for alcohol and acetone [J]. Opt. Precision Eng., 2014, 22(6): 1555-1561. (in Chinese)
LO K L,NG H S,GRANT D M,et al..Extended Petri net models for fault diagnosis for substation automation [J].IEEE Proceedings : Generation, Transmission and Distribution, 1999,146(3):229-234.
刘晶红, 孙辉, 沈宏海,等. 机载光电成像设备的可测试性系统设计[J]. 光学 精密工程,2008, 16(12):2435-2440. LIU J H, SUN H, SHEN H H, et al.. Design of testable system for airborne optoelectronic imaging equipment [J]. Opt. Precision Eng., 2008, 16(12):2435-2440. (in Chinese)
RICADELA A. Microsofts knowledge push [J]. InformationWeek. 2000, (805) :151.
SIONTOROU, CHRISTINA G. A knowledge-based approach to online fault diagnosis of FET biosensors [J]. IEEE Transactions on Instrumentation and Measurement, 2010, 59(9): 2345-2364.
李恺钦. 基于改进遗传算法的航空发动机故障诊断专家系统[D]. 南昌:南昌航空大学,2012. LI K Q. Based on an improved genetic algorithm for aero engine fault diagnosis expert system [D]. Nanchang:School of Aeronautical Manufacturing Engineering Nanchang Hangkong University,2012. (in Chinese)
高美铃. 基于PCA-RS智能技术的齿轮故障诊断研究与应用[D]. 武汉:武汉理工大学,2012. GAO M L.Research and application of gear fault diagnosis based on PCA-RS intellectual technology [D]. Wuhan:Wuhan university of technology,2012. (in Chinese)
杨思锋,王祁,刘鲁. 一种基于知识推送的故障诊断系统[J]. 航空动力学报,2010, 25(1): 203-207. YANG S F, WANG Q, LIU L. Fault diagnosis system based on knowledge pushing [J]. Journal of Aerospace Power, 2010, 25(1): 203-207. (in Chinese)
LEE H J,AHN B S,PARK Y M.A fault diagnosis expert system for distribution substations [J].IEEE Transactions on Power Delivery,2000, 15(1):92-97.
王磊, 陈青, 高湛军. 输电网故障诊断的知识表示方法及其应用[J]. 中国电机工程学报,2012, 32(4): 85-92. WANG L, CHEN Q, GAO ZH J. Representation and application of fault diagnosis knowledge in power transmission grids [J]. Proceedings of the CSEE. 2012, 32(4): 85-92.
0
浏览量
337
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构