浏览全部资源
扫码关注微信
1. 中国气象局 国家卫星气象中心 北京,100081
2. 中国科学院 长春光学精密机械与物理研究所, 吉林 长春 130033
3. 中国科学院大学 北京,中国,100049
4. 中国气象局 中国遥感卫星辐射测量和定标重点开放实验室 北京,100081
[ "赵维宁(1989-),男,辽宁沈阳人,博士研究生,2011年浙江大学获学士学位,主要从事卫星仪器在轨太阳辐射绝对定标及光谱仪器设计的研究。E-mail:acgdream@126.com" ]
[ "胡秀清(1974-),男,湖北人,博士,正研级高工。1996年获南京大学学士学位。2004年获北京师范大学硕士学位,主要研究方向:卫星光学遥感器的辐射定标,气溶胶、沙尘暴和大气可降水等大气参数的卫星反演算法研究,研发中分辨率光谱成像仪L1辐射定标业务算法。Email:huxq@cma.gov.cn" ]
[ "方伟(1965-),女,辽宁锦州人,博士,研究员,1997年于中科院长春光机所获得硕士学位,2005年于中科院长春光机所获得博士学位,现为FY-3卫星太阳辐射监测仪主任设计师,主要从事太阳辐射计量研究。E-mail:Fangw@ciomp.ac.cn" ]
[ "王玉鹏(1972-),男,山东沂水人,博士,副研究员,主要从事空间遥感技术、精密太阳跟踪、太阳光谱及总辐射测量等方面的研究。E-mail:wangyp@ciomp.ac.cn" ]
[ "徐娜(1982-),女,山东烟台人,博士,副研究员。2010年毕业于中科院大气物理研究所获得大气物理学与大气环境理学博士学位。主要研究方向:辐射定标、云微物理特性和大气可降水等卫星遥感反演方法研究。Email:xuna@cma.gov.cn" ]
收稿日期:2015-03-20,
修回日期:2015-04-17,
纸质出版日期:2015-07-25
移动端阅览
赵维宁, 胡秀清, 方伟等. 卫星光学仪器辐射交互定标方法的应用和发展[J]. 光学精密工程, 2015,23(7): 1921-1931
ZHAO Wei-ning, HU Xiu-qing, FANG Wei etc. Development and applications of intercalibration for satellite optical instruments[J]. Editorial Office of Optics and Precision Engineering, 2015,23(7): 1921-1931
赵维宁, 胡秀清, 方伟等. 卫星光学仪器辐射交互定标方法的应用和发展[J]. 光学精密工程, 2015,23(7): 1921-1931 DOI: 10.3788/OPE.20152307.1921.
ZHAO Wei-ning, HU Xiu-qing, FANG Wei etc. Development and applications of intercalibration for satellite optical instruments[J]. Editorial Office of Optics and Precision Engineering, 2015,23(7): 1921-1931 DOI: 10.3788/OPE.20152307.1921.
卫星遥感器的在轨交互定标是保证仪器数据记录的可靠性、连续性和一致性的核心方案
配合高精度的在轨参考基准仪器可使定标精度达到2%左右。本文介绍了交互定标技术的相关概念和意义
强调该技术是修正仪器间辐射定标相对偏差的重要手段。指出了交互定标的前提条件及现存难点。总结了交互定标实现流程
包括数据收集、匹配、筛选、处理
基准确定
精度分析等
分析了影响交互定标精度的各种因素。叙述了当前卫星光学遥感器交互定标的各类方法及其使用条件
总结了不同应用条件下所适用的各交互定标方法的定标精度。最后结合当前交互定标的国际合作活动
分析展望了未来光学遥感器在轨可溯源SI定标方法的前景趋势和难点问题。
The on-orbit intercalibration between satellite instruments is the central method to ensure the reliability
consistency and the continuity of observation data. The calibration uncertainty of 2% has been achieved combined with high-accuracy reference on-orbit instruments. This paper introduces the concepts and significance of the intercalibration and emphasizes which is a main way to correct the relative deviation of radiation calibration between instruments. It gives the basis conditions to complete the intercalibration and discusses the existing difficulties. Then
the realized process of the intercalibration is summed up such as the data collocating
filtering
correcting
reference changing and accuracy analyzing
and the effect factors on the calibration accuracy are analyzed.Moreover
it describes the current intercalibration methods for satellite optical remote sensing and needed conditions and summarizes the uncertainty of different intercalibration methods under different conditions for post-launch radiometric calibration of satellite remote sensors. In the end
this paper introduces a few international organizations and some ongoing joint campaigns with focusing on instrument calibration and validation
which shows the recent advance of research on the SI intercalibration in orbit.
LACHRADE S, FOUGNIE B, HENRY P, et al.. Cross-calibration over desert sites: Description, methodology and operational implementation [J].IEEE Trans. Geosci. Remote Sens., 2013,51(3): 1098-1113.
CAO C, XIONG X, WU A, et al.. Assessing the consistency of AVHRR and MODIS L1B reflectance for generating fundamental climate data records [J]. J. Geophys. Res. D, Atmos., 2008,113(9):D09114-1-10.
WU A, XIONG X, CAO C. Terra and Aqua MODIS inter-comparison of three reflective solar bands using AVHRR onboard the NOAA-KLM satellites [J]. Int. J. Remote Sens., 2008,29(7):1997-2010.
MITTAZ J P D, HARRIS A R, SULLIVAN J T. A physical method for the calibration of the AVHRR/3 thermal IR channels Part I: The prelaunch calibration data [J]. J. Atmos. Ocean. Technol., 2009,26(5):996-1019.
MADDY E S, KING T S, SUN H, et al.. Using Metop-A AVHRR clear-sky measurements to cloud-clear Metop-A IASI column radiances [J]. J. Atmos. Ocean. Technol., 2011,28(9):1104-1116.
SHI L. Intersatellite differences of HIRS long wave channels between NOAA-14 and NOAA-15 and between NOAA-17 and METOP-A [J]. IEEE Trans. Geosci. Remote Sens., 2013.
WU X, YU F. Correction for GOES imager spectral response function using GSICS. I: Theory [J]. IEEE Trans. Geosci. Remote Sens., 2013, 51(3):1215-1223.
YU F, WU X. Correction for GOES imager spectral response function using GSICS. II: Applications [J]. IEEE Trans. Geosci. Remote Sens., 2013,51(3):1200-1214.
YU F, WU X, RAJA M K R V, et al.. Diurnal and scan angle variations in the calibration of GOES imager infrared channels [J]. IEEE Trans. Geosci. Remote Sens., 2013.
HEWISON T J, WU X, YU F, et al.. GSICS intercalibration of infrared channels of geostationary imagers using Metop/IASI [J]. IEEE Trans. Geosci. Remote Sens., 2013,51(3):1056-1080.
HEWISON T. An evaluation of the uncertainty of the GSICS SEVIRI-IASI intercalibration products [J]. IEEE Trans. Geosci. Remote Sens., 2013,51(3):1171-1181.
CAO C, UPRETY S, XIONG J, et al.. Establishing the Antarctic Dome C community reference standard site towards consistent measurements from Earth observation satellites [J]. Can. J. Remote Sens., 2010, 36(5):498-513.
KIEFFER H H. Photometric stability of the lunar surface [J]. Icarus, 1997,130(2):323-327.
BUREAU. International Vocabulary of Metrology-Basic and General Concepts and Associated Terms (VIM) 3rd Edition [M]. Int. des Poids etMesures, Sèvres, France, JCGM/WG 2 Doc. N313, 2012.
SANDFORD S P, YOUNG D F, CORLISS J M, et al.. CLARREO: Cornerstone of the climate observing system measuring decadal change through accurate emitted infrared and reflected solar spectra and radio occultation[C]. in Proc. SPIE Sensors, Syst., Next-Gen. Satellites XIV, Toulouse, 2010:782-611.
FOX N, KAISER W A, SCHMUTZ W, et al.. Accurate radiometry from space: An essential tool for climate studies [J]. Philos. Trans. Roy. Soc. London A, Math. Phys. Sci., 2011,369(1953):4028-4063.
GSICS Traceability Statement for IASI and AIRS. Darmstadt, Germany, EUM/MET/TEN/11/0157, 2011.
WANG L, GOLDBERG M, WU X, et al.. Consistency assessment of atmospheric infrared sounder and infrared atmospheric sounding interferometer radiances: Double differences versus simultaneous nadir overpasses [J]. J. Geophys. Res. D, Atmos., 2011,116(11):D11111-1-11.
CHANDER G, MISHRA N, HELDER D L, et al.. Applications of Spectral Band Adjustment Factors (SBAF) for cross-calibration [J]. IEEE Trans. Geosci. Remote Sens., 2013,51(3):1267-1281.
DOELLING D R, LUKASHIN C, MINNIS P, et al.. Spectral reflectance corrections for satellite intercalibrations using SCIAMACHY data [J]. IEEE Geosci. Remote Sens. Lett., 2012,9(1):119-123.
PAGNUTTI M, BLONSKI S, CRAMER M, et al.. Targets, methods, and sites for assessing the in-flight spatial resolution of electro-optical data products [J]. Can. J. Remote Sens., 2010,36(5):583-601.
CHANDER G, HELDER D L, AARON D, et al.. Assessment of spectral, misregistration, and spatial uncertainties inherent in the cross-calibration study [J]. IEEE Trans. Geosci. Remote Sens., 2013, 51(3):1282-1296.
UPRETY S, CAO C, XIONG X, et al.. Radiometric Intercomparison between Suomi-NPP VIIRS and Aqua MODIS Reflective Solar Bands Using Simultaneous Nadir Overpass in the Low Latitudes [J]. J. Atmos. Ocean. Tech., 2013(30):2720-2736.
LIANG X, IGNATOV A. Monitoring of IR Clear-Sky Radiances over Oceans for SST (MICROS) [J]. J. Atmos. Ocean. Technol., 2011,28(10):1228-1242.
SAUNDERS R W, BLACKMORE T, CANDY B, et al.. Monitoring satellite radiance biases using NWP models [J]. IEEE Trans. Geosci. Remote Sens., 2013,51(3):1124-1138.
THOME K, MARKHAM B, BARKER J, et al.. Radiometric calibration of Landsat [J]. Photogramm. Eng. Remote Sens., 1997,63(7):853-858.
COSNEFROY H, LEROY M, BRIOTTET X. Selection and characterization of Saharan and Arabian desert sites for the calibration of optical satellite sensors [J]. Remote Sens. Environ., 1996,58(1):101-114.
FOUGNIE B, BACH R. Monitoring of radiometric sensitivity changes of space sensors using deep convective clouds: Operational application to PARASOL [J]. IEEE Trans. Geosci. Remote Sens., 2009,47(3):851-861.
SOHN B J, HAM S H, YANG P. Possibility of the visible-channel calibration using deep convective clouds overshooting the TTL [J]. J. Appl. Meteorol. Climatol., 2009,48(11):2271-2283.
VERMOTE E, SANTER R, DESCHAMPS P Y, et al.. In-flight calibration of large field of view sensors at short wavelengths using Rayleigh scattering [J]. Int. J. Remote Sens., 1992,13(18):3409-3429.
HAGOLLE O, NICOLAS J M, FOUGNIE B, et al.. Absolute calibration of VEGETATION derived from an interband method based on the sun glint over ocean [J]. IEEE Trans. Geosci. Remote Sens., 2004,42(7):1472-1481.
KIEFFER H H, STONE T C. The spectral irradiance of the moon [J]. Astron. J., 2005,129(6):2887-2901.
DEAN C, CHANG I L, LI Z, et al.. Recent advances in calibration of the GOES imager visible channel at NOAA [J]. in Proc. SPIE Earth Observing Syst. XVII, San Diego, 2012.
SIX D, FILY M, ALVAIN S, et al.. Surface characterisation of the Dome Concordia area (Antarctica) as a potential satellite calibration site, using Spot 4/Vegetation instrument [J]. Remote Sens. Environ., 2004,89(1):83-94.
SLATER P N, BIGGAR S F, HOLM R G, et al.. Reflectance- and radiance-based methods for the in-flight absolute calibration of multispectral sensors [J]. Remote Sens. Environ., 1987,22(1):11-37.
BARTON I J, MINNETT P J, MAILLET K A, et al.. The Miami 2001 infrared radiometer calibration and intercomparison. Part II: Shipboard results [J]. J. Atmos. Ocean. Technol., 2004,21(2):268-283.
李幼平,禹秉熙,王玉鹏,等. 成像光谱仪辐射定标影响量的测量链与不确定度[J]. 光学 精密工程,2006,14(5): 822-828. LI Y P, YU B X, WANG Y P, et al.. Measurement chain of influence quantities and uncertainty of radiometric calibration for imaging spectrometer [J]. Opt. Precision Eng., 2006,14(5):822-828. (in Chinese)
徐娜,胡秀清,陈林,等. 2012. FY-2静止卫星红外通道的高光谱交叉定标 [J]. 遥感学报, 16(5): 939-952. XU N, HU X Q, CHEN L, et al.. 2012. Inter-calibration of infrared chanels of FY-2/VISSR using high-spectral resolution sensors IASI and AIRS [J]. Journal of Remote Sensing,16(5):939-952.
0
浏览量
652
下载量
5
CSCD
关联资源
相关文章
相关作者
相关机构