浏览全部资源
扫码关注微信
1. 华南理工大学 机械与汽车工程学院,广东 广州,510640
2. 日本东京电气通信大学 机械工程与智能系统系 东京,日本,182-8585
[ "张勤(1964-),女,辽宁锦州人,博士,教授,1991年于哈尔滨工业大学获得硕士学位,2000年于日本国立金泽大学获得博士学位,主要研究方向为机器人及其应用,微机电系统。E-mail:zhangqin@scut.edu.cn" ]
[ "王建华(1990-),男,湖北荆州人,硕士研究生,主要从事微机电系统方面的研究。E-mail:wjh278877417@126.com" ]
[ "黄维军(1969-),女,湖北武汉人,博士,讲师,1994年于武汉理工大学获得硕士学位,2006年于华南理工大学获得博士学位,主要研究方向为流体流动及高效传热技术。E-mail:huangwj@scut.edu.cn" ]
[ "青山尚之(1958-),男,日本东京人,教授,1983年、1988年于东京工业大学分别获得硕士、博士学位,主要从事微细作业机器人及应用、智能机械等方面的研究。E-mail:aoyama@mce.uec.ac.jp" ]
收稿日期:2015-01-22,
修回日期:2015-03-10,
纸质出版日期:2015-07-25
移动端阅览
张勤, 王建华, 黄维军等. 旋流驱动微粒转动的性能与实验[J]. 光学精密工程, 2015,23(7): 2013-2022
ZHANG Qin, WANG Jian-hua, HUANG Wei-jun etc. Performance and experiments of particle rotation driven by swirl[J]. Editorial Office of Optics and Precision Engineering, 2015,23(7): 2013-2022
张勤, 王建华, 黄维军等. 旋流驱动微粒转动的性能与实验[J]. 光学精密工程, 2015,23(7): 2013-2022 DOI: 10.3788/OPE.20152307.2013.
ZHANG Qin, WANG Jian-hua, HUANG Wei-jun etc. Performance and experiments of particle rotation driven by swirl[J]. Editorial Office of Optics and Precision Engineering, 2015,23(7): 2013-2022 DOI: 10.3788/OPE.20152307.2013.
分析了旋流产生的机制及其驱动微粒运动的机理
建立了颗粒在旋流中的力学模型。以微米级的颗粒(几微米到几百微米)为例
分析了两支微管对向喷射所产生的旋流场的特点和颗粒在旋流场中的受力情况以及运动特点和运动规律。讨论了颗粒的尺寸、形状、位置变化对其旋转性能的影响
并通过实验验证了提出方法的可行性。分析和实验表明:两支平行微管相对喷射可以产生旋流
旋流可以驱动颗粒在其流场内稳定旋转。颗粒在旋流场内的运动性能与流场参数和微粒的形状、尺寸、偏心有关
减小颗粒的初始位置的偏心
减少公转成分
有利于颗粒姿态的捕捉和调整。即使颗粒参数变化
合理匹配流场参数
提出的方法仍然可以可以稳定地驱动颗粒转动。
How to generate a swirl and how to drive the particle movement by the swirl were analyzed. Then
a mechanics model of particles in the swirl was established. By taking the micro-level particles(microns to hundred microns)as examples
the characteristics of the rotary flow field generated by two ejecting micro tubes which were parallel placed and the force condition and movement characteristics of the particles in the rotary flow field were analyzed. The influences of different particle sizes
shapes and changed positions on the rotation performance of the particles were discussed
and an experiment was performed to verify the feasibility of swirl method. The analysis and experiments show that the swirl can be generated by two ejecting micro tubes which were parallel placed. And the swirl can drive the micro particles to rotate in the flow field stablely. The movement characteristics of the particles in the flow field are dependent on the flow parameters and particle shapes
particle sizes and the eccentricity. When the eccentric of initial position and the revolution of the particles are reduced
it will be conducive to capturing and adjusting the attitudes of particles. Even though the particle parameters are changed
the method still can drive the particle rotated in stability by reasonable matching these parameters.
OH E H, LEE S H, LEE S H, et al.. Cell-based high-throughput odorant screening system through visualization on a microwell array[J]. Biosensors and Bioelectronics, 2014, 53: 18-25.
PALKOVA Z, VACHOVA L, VALER M, et al.. Single-cell analysis of yeast, mammalian cells, and fungal spores with a microfluidic pressure-driven chip-based system [J]. Cytometry Part A, 2004, 59(2): 246-253.
GASCOYNE P, SATAYAVIVAD J, RUCHIRAWAT M. Microfluidic approaches to malaria detection [J]. Acta Tropica, 2004, 89(3): 357-369.
CHENG X, IRIMIA D, DIXON M, et al.. A microfluidic device for practical label-free CD4(+) T cell counting of HIV-infected subjects[J]. Lab on a Chip, 2007, 7(2): 170-178.
KUMAR A, BIEBUYCK H A, WHITESIDES G M. Patterning self-assembled monolayers: applications in materials science [J]. Langmuir, 1994, 10(5): 1498-1511.
CUI Y, BJORK M T, LIDDLE J A, et al.. Integration of colloidal nanocrystals into lithographically patterned devices[J]. Nano Letters, 2004, 4(6): 1093-1098.
FORREST S R. The path to ubiquitous and low-cost organic electronic appliances on plastic[J]. Nature, 2004, 428(6986): 911-918.
ZHANG W J, FRAKES D H, BABIKER H, et al.. Simulation and experimental characterization of microscopically accessible hydrodynamic microvortices [J]. Micromachines, 2012,3(2): 529-541.
MACDONALD M P, VOLKE-SEPULVEDA K, PATERSON L, et al.. Revolving interference patterns for the rotation of optically trapped particles[J]. Optics Communications, 2002,201: 21-28.
HU J H, ZHU X B, ZHOU Y J, et al.. Principle of the rotation of small particles around a nodal point of strip in flexural vibration [J]. Sensors and Actuators A:Physical, 2012,178: 202-208.
ANIFANDIS G, DAFOPOULOS K, MESSINI C I, et al.. Effect of the position of the polar body during ICSI on fertilization rate and embryo development [J]. Reproductive Sciences, 2010,17(9): 849-853.
KATTERA S, CHEN C. Developmental potential of human pronuclear zygotes in relation to their pronuclear orientation[J]. Human Reproduction, 2004,19(2): 294-299.
STODDART N R, FLEMING S D. Orientation of the first polar body of the oocyte at 6 or 12 o'clock during ICSI does not affect clinical outcome[J]. Human Reproduction, 2000,15(7): 1580-1585.
SUSLOV D, VERBELEN J-P. Cellulose orientation determines mechanical anisotropy in onion epidermis cell walls[J]. Journal of Experimental Botany, 2006,57(10): 2183-2192.
YUN H, KIM K, LEE W G. Cell manipulation in microfluidics[J]. Biofabrication, 2013,5(2): 022001.
AOYAMA H, CHIBA N, FUCHIWAKI O, et al.. Non-contact bio cell manipulation by nonlinear micro flow around the vibrated pipette on micro robot[C]. Proceedings of Twenty First American Society for Precision Engineering Annual Meeting, USA:ASPE, 2006,1.
章维一,侯丽雅,田桂中. 显微注射中细胞位姿调节技术及实验研究[J]. 中国机械工程, 2009,20(4): 409-412. ZHANG W Y, HOU L Y, TIAN G ZH. Mechanical analysis and experimental research on adjusting technology for cellular position and attitude in microinjection[J]. China Mechanical Engineering, 2009, 20(4): 409-412.(in Chinese)
张勤,苏刚,黄维军,等. 基于漩流的细胞姿态控制方法[J]. 机械工程学报,2012, 48(2): 186-192. ZHANG Q, SU G, HUANG W J, et al.. Swirl-based control method of cell orientation[J]. Journal of Mechanical Engineering, 2012, 48(2):186-192.(in Chinese)
ZHANG Q, HUANG W J, SU G, et al.. Experimental research on adjusting cell position and orientation with micro-fluid[J]. Key Engineering Materials, 2012,516: 557-562.
凌智勇,丁建宁,杨继昌,等. 微流动的研究现状及影响因素[J]. 江苏大学学报:自然科学版, 2002, 23(6): 1-5. LING ZH Y, DING J N, YANG J CH, et al.. Research advance in microfluid and its influencing factors [J]. Journal of Jiangsu University: Natural Science, 2002, 23(6): 1-5.(in Chinese)
李战华,周兴贝,朱善农. 非极性小分子有机液体在微管道中的流量特性[J]. 力学学报, 2002, 34(3): 432-438. LI ZH H, ZHOU X B, ZHU SH N. Flow characteristics of non-polar organic liquids with small molecules in a microchannel[J]. Acta Mechanica Sinica, 2002, 34(3): 432-438.(in Chinese)
郭烈锦. 两相与多相流动力学 [M]. 西安:西安交通大学出版社,2002. GUO L J. Two Phase and Multiphase Flow Mechanics[M]. Xi'an: Xi'an Jiaotong University Press, 2002.(in Chinese)
曹仲文,袁惠新. 旋流场中分散相颗粒径向受力及径向速度方程[J]. 江南大学学报:自然科学版, 2004, 3(5): 498-501. CAO ZH W,YUAN H X. The radial force and movement equation of particles in the swirling flow field [J]. Journal of Jiangnan University: Natural Science Edition,2004, 3(5): 498-501.(in Chinese)
李雪斌,袁惠新,曹仲文. 旋流场内分散相颗粒的受力特性分析[J]. 金属矿山, 2007 (12): 101-103. LI X B, YUAN H X, CAO ZH W. Characteristics analysis of forces on dispersal particles in swirling flow field [J]. Metal Mine, 2007 (12): 101-103.(in Chinese)
LI K, LI X B. Analysis to the forces and movement characteristic of the dispersal phase in swirling flow field [J]. Advanced Materials Research, 2012, 566: 140-144.
0
浏览量
390
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构