浏览全部资源
扫码关注微信
1. 吉林大学 通信工程学院,吉林 长春,中国,130012
2. 诺博橡胶制品有限公司,河北 保定,072550
收稿日期:2015-02-05,
修回日期:2015-04-03,
纸质出版日期:2015-07-25
移动端阅览
单泽彪, 石要武, 单泽涛等. 应用序列二次规划的波达方向与多普勒频率联合估计[J]. 光学精密工程, 2015,23(7): 2079-2085
SHAN Ze-biao, SHI Yao-wu, SHAN Ze-tao etc. Joint estimation of DOA and Doppler frequency by SQP[J]. Editorial Office of Optics and Precision Engineering, 2015,23(7): 2079-2085
单泽彪, 石要武, 单泽涛等. 应用序列二次规划的波达方向与多普勒频率联合估计[J]. 光学精密工程, 2015,23(7): 2079-2085 DOI: 10.3788/OPE.20152307.2079.
SHAN Ze-biao, SHI Yao-wu, SHAN Ze-tao etc. Joint estimation of DOA and Doppler frequency by SQP[J]. Editorial Office of Optics and Precision Engineering, 2015,23(7): 2079-2085 DOI: 10.3788/OPE.20152307.2079.
为了快速准确地联合估计阵列信号波达方向(DOA)与多普勒频率
提出了将序列二次规划(SQP)应用于最大似然函数优化的联合谱估计算法。该方法利用空时信号模型通过Hankel矩阵构造出阵列流型中包含DOA与多普勒频率信息的广义天线阵模型
并推导出其最大似然函数
从而将参数估计问题转化为非线性函数优化问题。然后
将SQP方法应用于似然函数的优化求解中
得到DOA与多普勒频率的估计值。最后应用SQP方法、微分进化法、遗传算法和量子粒子群算法分别进行了优化的仿真对比实验。结果表明:提出的算法具有寻优时间短
估计精度高
参数自动配对等特点
在信噪比为0 dB时估计两个目标信号源的DOA与多普勒频率的均方根误差分别为0.263 6°和0.007 6 rad
基本达到了阵列信号处理中参数联合估计方法的设计要求。
To estimate the Direction of Arrival (DOA) and Doppler frequency in array signal processing accurately and quickly
a joint spectrum estimation method based on maximum likelihood algorithm and Sequence Quadratic Program(SQP)was presented. With this method
a space-time signal model was used to construct a generalized array manifold matrix containing the information of DOAs and Doppler frequency based on the Hankel matrix
the joint spectrum was fitted using maximum likelihood algorithm
so that the joint parameter estimation was converted to multidimensional nonlinear function optimization. Then
the SQP algorithm was used to solve and optimize the maximum likelihood function and to obtain the estimation of DOAs and Doppler frequency. Finally
the simulation results were compared with the SQP method
differential evolution method
genetic method and quantum particle swarm optimization method. Experimental results indicate that the Root Mean Square Error(RMSE) of DOAs and Doppler frequency estimation are 0.2636°and 0.0076 rad respectively under the condition of estimating two signal sources with 0 dB for SNR. It satisfies the requirements of design of joint parameter estimation method in the array signal processing.
REDDY V V, NG B P, KHONG A W H. Derivative-constrained frequency-domain wideband DOA estimation [J]. Multidimensional Systems and Signal Processing, 2014, 25(1): 211-233.
ZHANG Z H, LIN J, SHI Y W. Application of artificial bee colony algorithm to maximum likelihood DOA estimation[J]. Journal of Bionic Engineering, 2013, 10(1):100-109.
张志成,温炎,石要武. 利用隔离小生境混合蛙跳方法联合估计波达方向和多普勒频率[J]. 光学 精密工程,2014,22(9): 2565-2571. ZHANG ZH CH, WEN Y, SHI Y W. Joint estimation of DOAs and Doppler frequency using isolation niche shuffled frog leaping algorithm [J]. Opt. Precision Eng., 2014, 22(9): 2565-2571. (in Chinese)
张志成, 林君, 石要武,等. 用加权子空间拟合和量子粒子群算法联合估计多普勒频率和波达方向[J]. 光学 精密工程, 2013, 21(9):2445-2451. ZHANG ZH CH, LIN J, SHI Y W. Joint estimation of Doppler and DOAs by WSF-QPSO method [J]. Opt. Precision Eng., 2013, 21(9):2445-2451. (in Chinese)
JACKSON L B, CHIEN C H. Frequency and bearing estimation by two-dimensional linear prediction[C]. Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing, Washington, DC, USA: ICASSP, 1979,4: 665-668.
LIN J D, FANG W H, WANG Y Y, et al.. FSF MUSIC for joint DOA and frequency estimation and its performance analysis[J]. IEEE Transactions on Signal Processing, 2006, 54(12): 4529-4542.
LEMMA A N, VAN D V A J, DEPRETTERE E F. Analysis of ESPRIT based joint angle-frequency estimation[C]. Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing, Istanbul, Turkey: ICASSP, 2000: 3053-3056.
LEMMA A N, VAN D V A J, DEPRETTERE E F. Analysis of joint angle-frequency estimation using ESPRIT[J]. IEEE Transactions on Signal Processing, 2003, 51(5): 1264-1283.
ATHELEY F. Asymptotically decoupled angle-frequency estimation with sensor arrays[C]. The Thirty-Third Asilomar Conference on Signal, Systems and Computers, Pacific Grove, USA: ACSSC, 1999: 1098-1102.
王惠刚,刘强. 多普勒方位联合估计的蒙特卡洛算法[J]. 电子学报, 2009, 37(9):1965-1970. WANG H G, LIU Q. A Monte Carlo method for joint estimation of Dopplers and DOAs[J]. Acta Electronica Sinica, 2009, 37(9): 1965-1970. (in Chinese)
WANG H G, KAY S. Maximum likelihood angle-Doppler estimator using importance sampling[J]. IEEE Transactions on Aerospace and Electronics Systems, 2010, 46(2): 610-622.
岳武陵, 吴勇. 基于多目标优化的空间直线度误差评定[J]. 光学 精密工程, 2008, 16 (8):1423-1428. YUE W L, WU Y. Evaluation of spatial straightness errors based on multi-target optimization[J]. Opt. Precision Eng., 2008, 16(8): 1423-1428. (in Chinese)
0
浏览量
398
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构