浏览全部资源
扫码关注微信
福州大学 物理与信息工程学院,福建 福州,350002
[ "王卫星(1959-),男,湖南人,博士,教授,博士生导师,1982年和1985年分别在国内获得学士学位和工程硕士,1997年在瑞典皇家工学院获得博士学位,主要从事图像处理、模式识别和机器视觉等研究方向。E-mail:znn525d@qq.com" ]
[ "肖翔(1990-),男,江西南昌人,2015在福州大学物理与信息工程学院年获得硕士学位,主要研究方向为图像处理及模式识别。E-mail:jgsxx8513@163.com" ]
[ "陈良琴(1980-),女,福建人,博士研究生,2002年,2005年于福州大学分别获得学士、硕士学位,主要研究方向为图像处理及模式识别。E-mail:odiechen@fzu.edu.cn" ]
收稿日期:2014-12-18,
修回日期:2015-02-10,
纸质出版日期:2015-07-25
移动端阅览
王卫星, 肖翔, 陈良琴. 结合最小滤波和引导滤波的暗原色去雾[J]. 光学精密工程, 2015,23(7): 2100-2108
Wang Wei-xing, Xiao Xiang, Chen Liang-qin. Image dark channel prior haze removal based on minimum filtering and guided filtering[J]. Editorial Office of Optics and Precision Engineering, 2015,23(7): 2100-2108
王卫星, 肖翔, 陈良琴. 结合最小滤波和引导滤波的暗原色去雾[J]. 光学精密工程, 2015,23(7): 2100-2108 DOI: 10.3788/OPE.20152307.2100.
Wang Wei-xing, Xiao Xiang, Chen Liang-qin. Image dark channel prior haze removal based on minimum filtering and guided filtering[J]. Editorial Office of Optics and Precision Engineering, 2015,23(7): 2100-2108 DOI: 10.3788/OPE.20152307.2100.
用基于暗原色信息的去雾方法处理雾化图像时
需要考虑消除景深边缘处的白色晕块并降低修复透射率过程所耗费的时间。为了既能够有效地去除白色晕块又能够降低修复透射率的处理时间
本文分析了最小滤波和引导滤波分别用于修复透射率的优缺点
提出了采用最小滤波和引导滤波相结合的方法来修复透射率。该方法综合了两者的优点
同时又弥补了各自的不足。较之于软抠图法
不仅有效消除了白色晕块
并且大大地降低了透射率处理时间
提高了处理效率。另外
针对传统暗原色去雾方法的缺点进行了改进。根据天空区域像素亮白的特性
将颜色和大气光相近的像素视为天空区域像素
然后对其进行颜色原值保留处理
从而有效地消除天空区域颜色的失真和跳变
从整体上改善了去雾复原图像的视觉效果。
When a hazed image is processed by dark prior haze removal method
it should take the elimination of white halo on the depth-edge and the reduction of time consuming for modifying the transmittance into account. In order to eliminate the white halo on the depth-edge and to reduce the time consuming for modifying the transmittance
this article fully analyzes the advantages and disadvantages of minimum filtering and guide filtering in modifying transmittance
respectively. A new method in combination with the minimum filtering and the guide filtering is adopted to modify the transmittance
by which their advantages are taken and the inadequacies are made up. As compared with the traditional method
it not only eliminates the white halo but also reduces the processing time significantly. In addition
this paper improves the poor result of traditional dark prior method with a sky area in the hazy image. According to the bright-white features of the pixels in the sky area
the pixels with color values similar to that of the airlight are viewed as the sky area pixels. Then these pixels are processed to maintain their original color values and to eliminate the color distortion and jump existing in the sky area effectively. Thus
the visual effect of whole defogging restored image could be improved.
NARASIMHAN S G, NAYAR K. Vision and the Atmosphere[J]. International Journal of computer Vision, 2002, 48(3):233-254.
NARASIMHAN S G, NAYAR K. Contrast restoration of weather degraded images[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 25(6):713-724.
NARASIMHAN S G, NAYAR K. Vision in Bad weather[C]. The Proceeclings of the Seventh IEEE International Conference on Compater Vision, 1999,2:820-827.
TAN R. Visibility in bad weather from a single image[J]. IEEE Conf. Computer Vision and Pattern Recognition, 2008.
FATTAL R. Single image dehazing[C]. Proceeding in SIGGRAPH'08 ACM, 2008.
HE K, SUN J, TANG XO. Single image haze removal using dark channel prior[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 12(33):2341-2353.
刘楠,程咏梅,赵永强. 基于加权暗通道的图像去雾方法[J]. 光子学报,2012,41(3):320-325. LIU N, CHENG Y M, ZHAO Y Q. An image dehazing method based on weighted dark channel prior[J]. Acta Photonica Sinica, 2012,41(3):320-325(in Chinese).
唐鉴波,江铁,王田. 基于引导滤波的单幅图像去雾算法的研究[J]. 科学技术与工程,2013,13(11):3021-3025,3042. TANG J B, JIANG T, WANG T. Research on single image dehazing using guided filtering[J]. Science Technology and Engineering, 2013,13(11):3021-3025,3042(in Chinese).
TAREL J P, HAUTIERE N. Fast visibility restoration from a single color or gray level image[C]. IEEE 12th International Conference on Computer Vision (ICCV),2009:2201-2208.
郭珈,王孝通,胡程鹏,等.基于单幅图像景深和大气散射模型的去雾方法[J]. 中国图像图形学报,2012,17(1):27-32. GUO J, WANG X T, HU CH P, et al.. Single image dehazing based on scene depth and physical model[J]. Journal of Image and Graphics, 2012,17(1):27-32.
HE K M, SUN J, TAND X O. Guided image filtering[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013,35(6):1397-1409.
PEDONE M, HEIKKIL J. Robust airlight estimation for haze removal from a single image[C], IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops(CVPRW), 2011:90-96.
嵇晓强,戴明,尹传历,等.航拍降质图像的去雾处理[J]. 光学 精密工程,2011,19(7):1659-1668. JI X Q, DAI M, YIN CH L, et al.. Haze removal for aerial degraded images[J]. Opt. Precision Eng.,2011, 19(7):1659-1668(in Chinese).
尹传历,孙丽娜,韩松伟,等. 基于暗原色先验的嵌入式图像增强系统[J]. 液晶与显示,2011,26(5):673-676. YIN CH L, SUN L N, HAN S W,et al.. Embedded image enhancement system based on dark channel prior[J]. Chinese Journal of Liquid Crystals and Displays, 2011, 26(5):673-676.
张绍阳,解源源,张鑫,等. 基于分数阶微分的模糊交通视频图像增强[J]. 光学 精密工程, 2014, 22(3):779-786. ZHANG SH Y, XIE Y Y, ZHANG X, et al.. Enhancement of fuzzy traffic video images based on fractional differential[J]. Opt. Precision Eng.,2014, 22(3): 779-786(in Chinese).
0
浏览量
616
下载量
17
CSCD
关联资源
相关文章
相关作者
相关机构