浏览全部资源
扫码关注微信
1. 长春师范大学 计算机科学与技术学院,吉林 长春,130032
2. 吉林大学 计算机科学与技术学院,吉林 长春,130012
[ "赵东(1978-),男,吉林德惠人,博士研究生,讲师,2008年于长春理工大学获得硕士学位,主要从事智能信息系统与嵌入式技术、计算机图像处理的研究。E-mail:zd-hy@163.com" ]
[ "赵宏伟(1962-),男,辽宁沈阳人,教授,博士生导师,1999年于吉林工业大学获得博士学位,主要从事智能信息系统与嵌入式技术、计算机图像处理与可视化的研究。E-mail:zhaohw@jlu.edu.cn" ]
[ "于繁华(1970-),男,吉林通化人,博士,教授,硕士生导师,2008年于吉林大学获得博士学位,主要从事计算智能及应用的研究。E-mail:ccsyyfh@163.com" ]
收稿日期:2015-04-20,
修回日期:2015-05-14,
纸质出版日期:2015-07-25
移动端阅览
赵东, 赵宏伟, 于繁华. 动态多目标优化的运动物体图像分割[J]. 光学精密工程, 2015,23(7): 2109-2116
ZHAO Dong, ZHAO Hong-wei, YU Fan-hua. Moving object image segmentation by dynamic multi-objective optimization[J]. Editorial Office of Optics and Precision Engineering, 2015,23(7): 2109-2116
赵东, 赵宏伟, 于繁华. 动态多目标优化的运动物体图像分割[J]. 光学精密工程, 2015,23(7): 2109-2116 DOI: 10.3788/OPE.20152307.2109.
ZHAO Dong, ZHAO Hong-wei, YU Fan-hua. Moving object image segmentation by dynamic multi-objective optimization[J]. Editorial Office of Optics and Precision Engineering, 2015,23(7): 2109-2116 DOI: 10.3788/OPE.20152307.2109.
对小区背景下运动物体图像进行分割时多使用单目标或多目标优化方法
这类方法不能有效适应目标的动态变化
因此本文提出一种动态多目标图像分割优化方法。该方法将时间及环境动态因素作为动态因子
利用K均值(K-Means)算法和和模糊C均值(FCM)聚类算法构造多目标函数;结合动态多目标粒子群算法(DMPSO)
使用背景差分法定义环境变化规则
实现动态多目标的图像分割。根据DMPSO算法优化后的聚类结果
分别与K-Means和FCM聚类方法得到的结果进行了对比。结果表明
动态多目标优化的Pareto最优解集分布均匀
图像分割准确率可达到95%
对图像识别的准确率可达到90%
具有较高的识别能力
能满足确定背景下运动物体的准确识别。
The single objective and multi-objective optimization methods are usually adopted to segment the moving objects in community background images. However
these methods can not adapt to the dynamic change of the objects effectively. In this paper
a dynamic multi-objective optimization image segmentation method is proposed. The method makes use of the time and environment dynamic changes as dynamic factors
and takes the advantages of the K-Means and Fuzzy C-Means (FCM) clustering algorithms to construct the multi-objective function. In addition
the Dynamic Multi-objective Particle Swarm Optimization (DMPSO) algorithm is also embedded in the method
and background difference method is used to define environmental change rules to implement dynamic multi-objective image segmentation. The simulation results based on the DMPSO algorithm are compared with that of K-Means and FCM algorithms. The results show that the dynamic multi-objective optimization has made the Pareto optimal solution set evenly distributed as compared with single target segmentation algorithm
the accuracy of image segmentation reaches 95%
and the recognition accuracy reaches 90%. For the high recognition capability
the algorithm satisfies the accurate identification of moving objects under the determined background.
刘淳安. 一种求解动态多目标优化问题的粒子群算法[J]. 系统仿真学报,2011(2):291-293. LIU CH A.A study of particle swarm algorithm for multi-objective optimization problem [J].Journal of System Simulation, 2011(2):291-293. (in Chinese)
IASON H,DAVID W.Dynamic multiobjective optimization with evolutionary algorighms:a forward-looking approach[C].Proc. of the GECC O'06 Washington,USA.,2006:1201-1208.
巩岁平,任军号,张宝磊. 一种多目标优化问题的理想灰色粒子群算法[J]. 计算机应用研究,2010(12):4457- 4459. GONG S P,REN J H,ZHANG B L.Grey particle swarm optimization based on TOPSIS for multi-objective optimization problems[J]. Application Research of Computers, 2010(12): 4457- 4459. (in Chinese)
胡俊峰,徐贵阳,郝亚洲. 基于响应面法的微操作平台多目标优化[J]. 光学 精密工程,2015,23(4):1096-1104. HU J F, XU G Y, HAO Y ZH. Multi-objective optimization of micro-manipulation stage based on response surface method[J]. Opt. Precision Eng., 2015, 23(4):1096-1104.(in Chinese)
颜雪松,胡成玉,姚宏,等. 精英粒子群优化算法及其在机器人路径规划中的应用[J]. 光学 精密工程,2013,21(12): 3160-3168. YAN X S,HU CH Y,YAO H, et al..Elite particle swarm optimization algorithm and its application in robot path planning[J].Opt. Precision Eng.,2013,21(12):3160-3168. (in Chinese)
GREEFF M,ENGELBRECHT A P.Sloving dynamic multi-objective problems with vector evaluated particle swarm optimization[C].Proceedings of Congress on Evolutionary Computation Piscataway,2008:2917-2924.
江新姿,高尚. 基于K均值与蚁群混合聚类的图像分割[J]. 计算机与数字工程,2011,(6):138-141. JIANG X Z,GAO SH.Image segmentation method based on combining ant colony clustering with K-means algorithm[J].Computer & Digital Engineering, 2011,(6):138-141. (in Chinese)
王易偱. 基于K均值聚类分割彩色图像算法的改进[J]. 计算机应用与软件,2010,27(8):127-130. WANG Y D.Improving algorithm of K-means-based clustering segmentation of color image [J].Computer Applications and Software,2010,27(8):127-130. (in Chinese)
林开颜,徐立鸿,吴军辉. 快速模糊C聚均值聚类彩色图像分割方法[J]. 图像图形学报,2004,9(2):159-163. LIN K Y,XU L H,WU J H.A fast fuzzy C-means clustering for color image segmentation[J].Journal of Image and Graphics, 2004,9(2):159-163. (in Chinese)
陈恺,陈芳,戴敏,等. 基于萤火虫算法的二维熵多阈值快速图像分割[J]. 光学 精密工程,2014,22(2): 517-523. CHEN K, CHEN F, DAI M, et al.. Fast image segmentation with multilevel threshold of two-dimensional entropy based on firefly algorithm [J]. Opt. Precision Eng., 2014, 22(2): 517-523. (in Chinese)
钟陈颖. 基于进化多目标优化的图像分割[D].华东师范大学,2012. ZHONG CH Y.Image segmentation based on evolutionary multiobjective optimazation[D].East China Normal University,2012. (in Chinese)
ZHAO B.Image segmentation based on ant colony optimization and K-means clustering[C]. International Conference on Automation and Logistics,2007.
JIANG SH H,WANG Q,ZHANG J Q,et al.An image tracking algorithm based on object center distance-weighting and image feature recognition[J].Acta Electronica Sinica,2006, 34 (7): 1175-1180.
KATARI V, CH, S., SATAPATHY, R., et al.. Hybridized improved genetic algorithm with variable length chromosome for image clustering abstract [J]. International Journal of Computer Science and Network Security,2007,7(11):1121-1131.
OMRAN M, ENGE B A, SALMAN A.Particle swarm optimization method for image clustering[J]. International Journal of Pattern Recognition and Artificial Intelligence, 2005,19(3): 297-322.
0
浏览量
460
下载量
8
CSCD
关联资源
相关文章
相关作者
相关机构