浏览全部资源
扫码关注微信
中国科学院长春光学精密机械与物理研究所, 应用光学国家重点实验室 超精密光学工程研究中心,吉林 长春,130033
收稿日期:2014-08-25,
修回日期:2014-09-30,
纸质出版日期:2015-08-25
移动端阅览
王飞, 张健, 彭利荣等. 气囊抛光过程的运动精度控制[J]. 光学精密工程, 2015,23(8): 2220-2228
WANG Fei, ZHANG Jian, PENG Li-rong etc. Motion-precision control in bonnet-polishing[J]. Editorial Office of Optics and Precision Engineering, 2015,23(8): 2220-2228
王飞, 张健, 彭利荣等. 气囊抛光过程的运动精度控制[J]. 光学精密工程, 2015,23(8): 2220-2228 DOI: 10.3788/OPE.20152308.2220.
WANG Fei, ZHANG Jian, PENG Li-rong etc. Motion-precision control in bonnet-polishing[J]. Editorial Office of Optics and Precision Engineering, 2015,23(8): 2220-2228 DOI: 10.3788/OPE.20152308.2220.
针对用于球面、非球面光学元件超精密光学加工的气囊抛光技术
提出了一套控制抛光过程中气囊运动精度的方法。该方法通过控制加工单元的温度
保证抛光过程中设备运动精度达到50 μm;使用坐标传递法
使检测数据二维方向对准不确定度达到0.30~0.70 mm。另外
基于磨头去除量估计与反馈修正法
提高精抛过程面形误差收敛效率。最后
通过磨头探测校准法
将磨头与加工工件法向位置精度提高至10 μm。实际抛光实验显示:使用运动精度控制法在280 mm口径的平面精密抛光中获得的面形加工精度为0.8 nm(RMS)
在160 mm口径的凹球面精密抛光中获得的面形加工结果为1.1 nm(RMS)
实现了超高精度面形修正的目的
为超高精度球面、非球面光学元件加工提供了一套行之有效的方法。该方法同样适用于其他接触式小磨头数控抛光方法。
To meet the ultra-high precision manufacture demands of spherical surfaces and aspherical surfaces in an optical system of Deep Ultra Violet (DUV) and Extreme Ultra Violet (EUV)
a series of motion-precision control methods in bonnet-polishing were proposed. Firstly
the temperatures of main operation units were finely controlled to allow the motion-precision of polishing to be to 50 μm. Then
the coordinates transmitting method was used to guarantee the two-dimension unity between measured data and operating data to be 0.30-0.70 mm. Furthermore
the convergence efficiency of surface-error in fine polishing was improved by bonnet removal estimation method and feedback correction method. Finally
the vertical position accuracy between bonnet and work piece was improved to 10 μm by probing-correction method. The experiment results on a actual polishing by using motion-precision control methods indicate that the surface machining accuracy is 0.8 nm(RMS) in polishing a flat with a diameter of 280 mm
and that is 1.1 nm(RMS) in polishing a concave with a diameter of 160 mm. The proposed methods realize ultra-high precision polishing for spherical surfaces and aspherical surfaces
and they are also suitable for other contact small tool computer controlled polishing.
师途,杨甬英,张磊,等. 非球面光学元件的面形检测技术[J]. 中国光学, 2014, 7(1):26-46 SHI T, YANG Y Y, ZHANG L, et al.. Surface testing methods of aspheric optical elements[J]. Chinese Optics, 2014, 7(1):26-46.(in Chinese)
李锐钢,郑立功,张峰,等. 大口径高陡度离轴非球面精磨阶段的数控加工[J]. 光学 精密工程, 2007, 15(5):633-639. LI R G, ZHENG L G, ZHANG F, et al.. Computer controlled manufacturing during fine grinding stage of highly steep off-axis asphere with large aperture [J]. Opt. Precision Eng., 2007, 15(5):633-639.(in Chinese)
王孝坤,王丽辉,邓伟杰,等. 用非零位补偿法检测大口径非球面反射镜[J]. 光学 精密工程, 2011, 19(3):520-528. WANG X K, WANG L H, DENG W J, et al.. Measurement of large aspheric mirrors by non-null testing [J]. Opt. Precision Eng., 2011, 19(3):520-528.(in Chinese)
KERKHOF M. Full optical column characterization of DUV lithographic projection tools [J]. Proc. of SPIE, 2004, 5377: 1960-1970.
KAMEYAMA M. Immersion and 32 nm lithography:Now and future [J]. Proc. of SPIE, 2007, 6724:0277786X1-6.
WEISER M. Ion beam figuring for lithography optics [J]. Nuclear Instruments and Methods in Physics Research B, 2009,269(8-9):1390-1393.
GARREIS R. Catadioptric optics enabling ultra-high NA lithography[C]. Selete and Sematech. Hyper-NA Session.3rd International Symposium on Immersion Lithography, Kyoto,2006: 34-35.
杨力. 现代光学制造工程[M]. 北京:科学出版社,2008. YANG L. Modern Optical Manufacturing Engineering [M]. Beijing:Science Press,2008. (in Chinese)
ZEISS C. Very high aperture projection objective, US:7339743[P]. 2005-06-30.
JONES R A. Rapid optical fabrication with computer-controlled optical surfacing[J]. Opt. Eng., 1991, 30(11): 1962-1969.
LAGUARTA F, LUPON N, VEGA F, et al.. Laser application for optical glass polishing[C]. SPIE, 1996, 2775: 603-612.
戴一帆,周林,谢旭辉,等. 应用离子束进行光学镜面确定性修形的实现[J]. 光学学报, 2008, 28(6): 1132-1137. DAI Y F, ZHOU L, XIE X H, et al.. Deterministic figuring in optical machining by ion beam [J]. Acta Optica Sinica, 2008, 28(6): 1132-1137.(in Chinese)
POLLICOVE H M. Next generation optics manufacturing technologies [C]. SPIE, 2000, 4231:8-15.
彭小强,戴一帆,唐宇. 基于灰色预测控制的磁流变抛光液循环控制系统[J]. 光学 精密工程, 2007, 15(1):100-105. PENG X Q, DAI Y F, TANG Y. Circulatory system for MR fluid based on gray forecast control algorithm [J]. Opt. Precision Eng., 2007, 15(1):100-105.(in Chinese)
张健,代雷,王飞,等. 小磨头自适应抛光抑制高精度非球面中频误差[J]. 光学学报, 2013, 33(8): 0822002-1-7. ZHANG J, DAI L, WANG F, et al.. Restraint of mid-spatial-frequency error asphreic surface by small-tool adaptive polishing [J]. Acta Optica Sinica, 2013, 33(8): 0822002-1-7.(in Chinese)
史永杰,郑堤,王龙山,等. 非球面精密数控研抛中研抛力的控制[J]. 光学 精密工程, 2011, 19(5):1013-1021. SHI Y J, ZHENG D, WANG L SH, et al.. Polishing force control in precise NC polishing of aspheric parts [J]. Opt. Precision Eng., 2011, 19(5): 1013-1021.(in Chinese)
张峰. 非球面碳化硅表面硅改性层的数控化学机械抛光[J]. 光学 精密工程, 2013, 21(12):3015-3020. ZHANG F. Computer-controlled chemical mechanical polishing of silicon modification layer on aspheric silicon carbide surface [J]. Opt. Precision Eng., 2013, 21(12):3015-3020.(in Chinese)
薛栋林,张忠玉,张学军. 一种中小口径非球面元件数控抛光技术[J]. 光学 精密工程, 2005, 13(2):198-204. XUE D L, ZHANG ZH Y, ZHANG X J. Computer controlled polishing technology for middle or small aspheric lens [J]. Opt. Precision Eng., 2005, 13(2):198-204.(in Chinese)
BINGHAM R G,WALKER D D,KIM D H, et al.. A novel automated process for aspheric surfaces [C]. SPIE, 2000, 4093: 445-451.
WALKER D D,BROOKS D. The first aspheric form and texture results from a product ion machine embodying the precession process[C]. SPIE, 2001, 4451:267-277.
WALKER D D,FREEMAN R,CAVANA G, et al.. The Zeeko/ UCL process for polishing large lenses and prisms [C]. SPIE, 2002, 4411: 106-112.
WALKER D D, BEAUCAMP A,BROOKS D, et al.. Novel CNC polishing process for control of form and texture on aspheric surfaces [C]. SPIE, 2002, 4767: 99-106.
WALKER D D,BEAUCAMP A,BROOKS D, et al.. New results from the precessions polishing process scaled to larger sizes[C]. SPIE, 2004, 5494: 71-81.
张伟,李洪玉,于国彧. 光学元件超精密气囊抛光关键技术研究现状[J]. 光学学报, 2009, 29(1):27-34. ZHANG W, LI H Y, YU G Y. Current situation of ultra-precision bonnet polishing key technology of optical elements [J]. Acta Optica Sinica, 2009, 29(1):27-34. (in Chinese)
李洪玉,张伟,于国彧. 空间光学元件超精密气囊抛光的去除特性研究[J]. 光学学报, 2009, 29(3):811-817. LI H Y, ZHANG W, YU G Y. Removing charaeteristics of ultraprecise bonnet polishing on spatial optics elements [J]. Acta Optica Sinica, 2009, 29(3):811-817. (in Chinese)
WALKER D D,BEAU CAMP A,DOUBROVSKI V, et al.. New developments in the precessions process for manufacturing freeform, large-optical, and precision mechanical surfaces[C]. SPIE, 2005, 6148: 51-60.
王春锦,郭隐彪,王振忠,等. 光学元件气囊抛光系统动态去除函数建模[J]. 机械工程学报, 2013, 49(17): 19-25. WANG C J, GUO Y B, WANG ZH ZH, et al.. Dynamic removal function modeling of bonnet tool polishing on optics elements [J]. Journal of Mechanical Engineering, 2013, 49(17):19-25. (in Chinese)
金明生,计时鸣,张利,等. 连续进动气囊抛光行间距优化及实验研究[J]. 中国机械工程, 2013, 24(7):861-865. JIN M SH, JI SH M, ZHANG L, et al..Line spacing optimization and experimental research of gasbag polishing with continuous precession[J]. China Mechanical Engineering, 2013, 24(7):861-865.(in Chinese)
潘日,王振忠,王春锦,等. 自由曲面光学元件气囊抛光进动运动控制技术[J]. 机械工程学报, 2013, 49(3):186-193. PAN R, WANG ZH ZH, WANG CH J, et al..Control techniques of bonnet polishing for free-form optical lenses with precession[J]. Journal of Mechanical Engineering, 2013, 49(3):186-193.(in Chinese)
0
浏览量
400
下载量
6
CSCD
关联资源
相关文章
相关作者
相关机构