浏览全部资源
扫码关注微信
清华大学 热能工程系, 热科学与动力工程教育部重点实验室 北京,100084
收稿日期:2014-11-03,
修回日期:2015-01-06,
纸质出版日期:2015-08-25
移动端阅览
孔成栋, 于丹, 姚强等. 基于彩色火焰图像的铝、硼纳米颗粒燃烧特性[J]. 光学精密工程, 2015,23(8): 2288-2295
KONG Cheng-dong, YU Dan, YAO Qiang etc. Combustion characteristics of aluminum and boron nanoparticles based on flame color images[J]. Editorial Office of Optics and Precision Engineering, 2015,23(8): 2288-2295
孔成栋, 于丹, 姚强等. 基于彩色火焰图像的铝、硼纳米颗粒燃烧特性[J]. 光学精密工程, 2015,23(8): 2288-2295 DOI: 10.3788/OPE.20152308.2288.
KONG Cheng-dong, YU Dan, YAO Qiang etc. Combustion characteristics of aluminum and boron nanoparticles based on flame color images[J]. Editorial Office of Optics and Precision Engineering, 2015,23(8): 2288-2295 DOI: 10.3788/OPE.20152308.2288.
用彩色数码相机拍照结合图像处理的诊断方法研究了铝、硼纳米颗粒的燃烧特性和机理
得到了铝、硼纳米颗粒火焰的形貌特征、温度分布及着火时间等。燃烧实验中使用多元扩散平焰燃烧器(Hencken 燃烧器)提供可控的高温环境
利用固体颗粒乙醇溶解-超声分散-雾化-干燥的给粉方式产生高分散的纳米气溶胶
并在不同工况下对纳米颗粒火焰进行拍照。从所得彩色图片中提取红、绿、蓝三色通道信号
结合普朗克辐射定律获得颗粒的辐射强度信息及温度信息。结果表明:不同环境温度会导致不同的颗粒变温历程。高温环境下铝、硼颗粒经着火后颗粒温度逐渐下降
而低温下由于氧化层多晶相变的影响铝颗粒温度先缓慢升高而后缓慢下降
硼颗粒温度则几乎维持恒定。硼颗粒着火过程可分为着火延时和着火两个阶段
通过火焰图像定义了相应的时间
测得的硼颗粒着火延迟时间为1.17~2.98 ms
着火时间为0.31~0.85ms。
The combustion characteristics of aluminum and boron nanoparticles were studied based on the optical diagnostics using a color digital camera and subsequent image processing and their morphologic features
temperature characteristics and the ignition time were obtained. In the experiments
the multi-diffusion flat flame burner (i.e. Hencken burner) was used to support a tunable high temperature ambience. A series of processes including dissolving the nanoparticles into the ethanol
ultrasonically dispersing
atomization
and diffusion-drying were used to generate well-dispersed nanoparticle aerosol. The flame images of the nanoparticles were recorded by a color digital camera under different experimental conditions. The signals of red
green and blue channels were derived from the color images to obtain the radiation intensity and the information of particle temperatures based on the Planck's law. The results indicate different particle temperature profiles at different ambient temperature. At a high temperature
the particle temperatures of Al and B decrease directly after ignition. At a low temperature
the particle temperature of Al increases slowly to a peak and then decreases due to the polymorphic phase transition of the alumina shell
while the particle temperature of B is nearly constant. The ignition process of B is divided into ignition delay and ignition stage
and the time could be defined from the flame images. The time of ignition delay for B ranges from 1.17 ms to 2.98 ms and the ignition time ranges from 0.31 ms to 0.85 ms.
ZHOU W. Numerical Study of Multi-phase Combustion: Ignition and Combustion of An Isolated Boron Particle in Fluorinated Environments [D]. Princeton: Princeton University,1998.
DREIZIN E L. Metal-based reactive nanomaterials [J]. Prog. Energ. Combust. Sci., 2009, 35(2):141-167.
ZHUK A Z, SHEINDLIN A E, KLEYMENOV B V, et al.. Use of low-cost aluminum in electric energy production [J]. J.Power Sources, 2006,157 (2): 921-926.
VLASKIN M S, SHKOLNIKOV E I, BERSH A V, et al. An experimental aluminum-fueled power plant [J]. J.Power Sources, 2011, 196 (20): 8828-8835.
GALFETTI L, DE LUCA L T, SEVERINI F, et al.. Nanoparticles for solid rocket propulsion [J]. J. Phys.: Condens. Matter, 2006, 18 (33SI):1991-2005.
万俊,蔡水洲,刘源,等. 推进剂铝粉与水反应特性研究[J]. 固体推进,2012(2):207-211. WAN J, CAI SH ZH, LIU Y, et al.. Study on reaction characteristic of aluminum powder with water applied to propellant[J]. Journal of Solid Rocket Technology, 2012(2): 207-211.
BAZYN T, KRIER H, GLUMAC N. Combustion of nanoaluminum at elevated pressure and temperature behind reflected shock waves [J]. Combust. Flame, 2006, 145: 703-713.
KRIER H, BURTON R L, SPALDING M J, et al.. Ignition Dynamics of Boron Particles in a Shock Tube [J]. J. Propul.Power, 1998, 14(2): 166-172.
SPALDING M J, KRIER H, BURTON R L. Boron suboxides measured during ignition and combustion of boron in shocked Ar/F/O2 and Ar/N2/O2 mixtures [J]. Combust. Flame, 2000(120): 200-210.
FOELSCHE R O, BURTON R L, KRIER H. Boron particle ignition and combustion at 30-150 atm [J]. Combust. Flame, 1999(117): 32-58.
JAIN A, ANTHONYSAMY S, ANANTHASIVAN K, et al.. Studies on the ignition behavior of boron powder [J]. Termochimica Acta, 2010,(500): 63-68.
TRUNOV M A, SCHOENITZ M, DREIZIN E L. Effect of polymorphic phase transformations in alumina layer on ignition of aluminum particles [J]. Combust. Theor. Model., 2006(10):603-623.
TRUNOV M A, SCHOENITZ M, ZHU X, et al.. Effect of polymorphic phase transformations in Al2O3 film on oxidation kinetics of aluminum powders [J]. Combust. Flame, 2005(140):310-318.
樊永平,纪松,张延松,等. 纳米铝粉的活性和放热行为研究[J]. 兵器材料科学与工程,2011(2):93-95. FAN Y P, JI S, ZHANG Y S, et al.. Activity and exothermic behavior of nano-aluminum powder [J]. Ordnance Material Science and Engineering, 2011(2): 93-95. (in Chinese)
YUASA S, ISODA H. Ignition and combustion of small boron lumps in an oxygen stream [J]. Combust. Flame, 1991(86):216-222.
GILL R J, BADIOLA C,DREIZIN E L. Combustion times and emission profiles of micron-sized aluminum particles burning in different environments [J]. Combust. Flame, 2010(157): 2015-2023.
MOHAN S, FURET L, DREIZIN E L. Aluminum particle ignition in different oxidizing environments [J]. Combust. Flame, 2010(157): 1356-1363.
李鑫,赵凤起,郝海霞,等. 不同类型微/纳米铝粉点火燃烧特性研究[J]. 兵工学报,2014,3(5):640-647. LI X, ZHAO F Q, HAO H X, et al.. Research on ignition and combustion properties of different micro/nano-aluminum powders[J]. Acta Armamentarii, 2014, 35(5): 640-647. (In Chinese)
YEH C L, KUO K K. Ignition and combustion of boron particles [J]. Prog. Energy Combust. Sci., 1996, 22: 511-541.
ULAS A, KUO K K, GOTZMER C. Ignition and combustion of boron particles in fluorine-containing environments [J]. Combust. Flame, 2001, 127: 1935-1957.
YOUNG G, SULLIVAN K, ZACHARIAH M R, et al.. Combustion characteristics of boron nanoparticles [J]. Combust. Flame, 2009(156): 322-333.
KONG C, YAO Q, YU D, et al.. Combustion characteristics of well-dispersed aluminum nanoparticle streams in post flame environment [J]. P. Combust. Inst., 2015, 35(2): 2479-2486.
BRISCOE B J, OZKAN N. Compaction behavior of agglomerated alumina Powders [J]. Powder Technol., 1997, 90: 195-203.
KUHN P B, MA B, CONNELLY B C, et al.. Soot and thin-filament pyrometry using a color digital camera [J]. P. Combust. Inst., 2011(33):743-750.
RAI A, PARK K, ZHOU L, et al.. Understanding the mechanism of aluminum nanoparticle oxidation [J]. Combust. Theory and Model., 2006, 10(5): 843-859.
TRUNOV M A, UMBRAJKAR S M, SCHOENITZ M, et al.. Oxidation and melting of aluminum nanoparticles [J]. J.Phys. Chem. B, 2006 (110):13094-13099.
0
浏览量
316
下载量
4
CSCD
关联资源
相关文章
相关作者
相关机构