浏览全部资源
扫码关注微信
1. 中国科学院大学 北京,中国,100049
2. 中国科学院 沈阳自动化研究所,辽宁 沈阳,110016
3. 中国科学院 光电信息处理重点实验室,辽宁 沈阳,110016
收稿日期:2015-04-03,
修回日期:2015-06-03,
纸质出版日期:2015-08-25
移动端阅览
赵春阳, 赵怀慈,. 结合特征定位噪声表征的单应矩阵精确鲁棒估计[J]. 光学精密工程, 2015,23(8): 2357-2368
ZHAO Chun-Yang, ZHAO Huai-Ci,. Accuracy and robust estimation of homography based on feature point location noise[J]. Editorial Office of Optics and Precision Engineering, 2015,23(8): 2357-2368
赵春阳, 赵怀慈,. 结合特征定位噪声表征的单应矩阵精确鲁棒估计[J]. 光学精密工程, 2015,23(8): 2357-2368 DOI: 10.3788/OPE.20152308.2357.
ZHAO Chun-Yang, ZHAO Huai-Ci,. Accuracy and robust estimation of homography based on feature point location noise[J]. Editorial Office of Optics and Precision Engineering, 2015,23(8): 2357-2368 DOI: 10.3788/OPE.20152308.2357.
针对基于特征匹配的单应矩阵估计方法的特征定位噪声的各向异性非同分布对其精度和鲁棒性的影响
提出了一种结合特征定位噪声表征的单应矩阵估计方法。该方法采用协方差矩阵来表征特征点定位噪声;基于协方差矩阵加权采样一致性(CWSAC)的内点检验方法来提高单应矩阵估计的鲁棒性。最后
提出一种单应矩阵高精度估计算法——协方差加权Levenberg-Marquardt(CW L-M)法。该方法结合协方差矩阵重新定义优化目标函数
提高了单应矩阵的估计精度。基于仿真数据和真实图像的实验表明
在相同定位噪声和内点比例条件下
本文算法的估计精度显著优于RANSAC(RANdom SAmple Consensus)、LMedS(Least Median of Squares)
PROSAC(PROgressive SAmple Consensus)、M-SAC(M-estimator SAmple Consensus)和MLESAC(Maximum Likelihood SAmple Consensus)等传统算法
投影均方误差比次优方法降低了3%~21%。另外
本文方法对定位噪声和内点比例变化均具有较好的鲁棒性。
The feature location noise from feature-based homography estimation methods is isotropic and non-identical distribution
and it effects the accuracy and robustness of homography estimation methods significantly in practical applications. Therefore
this paper proposes a high accuracy and robust homography estimation method based on location noise of feature points. The method uses a covariance matrix to characterize the location noise of feature points and takes an inner point verification method based on Covariance matrix Weight SAmple Consensus(CWSAC) to improve the robustness of the homography estimation method. Finally
a high accuracy homography matrix refined method
Covariance matrix Weight Levenberg-Marquardt(CW L-M) is proposed by combining covariance matrix with Levenberg-Marquardt method
and it improves the estimation accuracy of homography matrix by redefining a optimized object function. The experiments on simulation data and real images show that as compared with state-of-the-art methods
such as RANSAC(RANdom SAmple Consensus)
LMedS(Least Median of Squares)
PROSAC(PROgressive SAmple Consensus)
M-SAC(M-estimator SAmple Consensus)and MLESAC(Maximum Likelihood SAmple Consensus)
the accuracy of homography estimation has improved greatly and the root mean squares of reproject error has reduced 3%-21% than that of the subprime method in the same location noise and the same inlier proportion. In addition
the proposed method is robust to the noise level and inlier proportion changing.
DUAN Y N,CHEN W, WANG M ZH. A relative radiometric correction method for airborne image using outdoor calibration and image statistics [J]. IEEE Transaction on Geoscience and Remote Sensing, 2014, 52(8): 5164-5174.
杨磊, 李桂菊, 王丽荣. 面向场景重构的多序列间配准[J]. 光学 精密工程,2015, 23(2):557-565. YANG L, LI G J, WANG L R. Registration between multiple sequences for scene construction[J]. Opt. Precision Eng., 2015, 23(2):557-565. (in Chinese)
王健博, 朱明. 基于字典描述向量的实时图像配准[J]. 光学 精密工程,2014, 22(6):1613-1621. WANG J B, ZHU M. Realtime image registration based on dictionary feature descriptor[J]. Opt. Precision Eng., 2014, 22(6):1613-1621. (in Chinese)
ZARAGOZA J, CHIN T J, TRAN Q H. As-projective-as-possible image stitching with moving DLT [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2014, 36(7):1285-1298.
王锋, 程敏, 陈小平. 面向机器人室内建图的RGB-D图像对齐算法[J]. 机器人,2015, 37(2):129-135. WANG F, CHENG M, CHEN X P. An RGB-D image alignment algorithm for robotic mapping in indoor environments[J]. ROBOT, 2015, 37(2):129-135. (in Chinese)
HARTLEY R, ZISSERMAN A. Multiple View Geometry in Computer Vision[M]. 2nd Edition. Cambridge:Cambridge University Press, 2004,87-129.
HARTLEY R. In defense of the eight-point algorithm [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(6): 580-593.
FISCHLER M A,BOLLES R C. Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography [J]. Communications of the ACM, 1981, 24(6):381-395.
ROUSSEEUW P J. Least median of squares regression [J]. Journal of the American Statistical Association, 1984, 79(388): 871-880.
YAN Q, XU Y, YANG X K. HEASK: robust homography estimation based on appearance similarity and keypoint correspondences [J]. Pattern Recognition, 2014, 47(1): 368-387.
MOU W, WANG H, SEET G. Robust homography estimation based on nonlinear least squares optimization [J]. Mathematical Problems in Engineering, 2014:372-377.
CHUM O,MATAS J. Matching with prosa progressive sample consensus [C]. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2005,220-226.
RAGURAM R,FRAHM J M,POLLEFEYS M. A comparative analysis of ransac techniques leading to adaptive real-time random sample consensus [C]. European Conference on Computer Vision, 2008,500-513.
TORR P,ZISSERMAN A. Mlesac: a new robust estimator with application to estimating image geometry [J]. Computer Vision and Image Understanding, 2000, 78(1): 138-156.
TORR P. Bayesian model estimation and selection for epipolar geometry and generic manifold fitting[J]. International Journal of Computer Vision, 2002, 50(1): 35-61.
LEBEDA K, MATAS J, CHUM O. Fixing the locally optimized RANSAC [C]. Proceeding of the British Machine Vision Conference, Guildford, ENGLAND, 2012.
LOWE D. Distinctive image features from scale-invariant keypoints [J]. International Journal of Computer Vision, 2004, 60(2): 91-110.
BAY H, TUYTELAARS T. SURF: Speeded Up Robust Features[C]. European Conference on Computer Vision, Graz, Austria, 2006: 404-417.
STEELE R MATT, CHRISTOPHERh JAYNES. Feature uncertainty arising from covariant image noise[C]. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Diego, CA, 2005: 1063-1070.
ABDEL-HAKIM A E,FARAG A A. Farag. A novel stability quantification of detected interest points in scale-space[C]. International Conference on Pattern Recognition, Tampa, FL, 2008,124-127.
BEMHARD Z, PIERRE F G, FLORIAN S,et al.. Estimation of location uncertainty for scale invariant feature points[C]. British Machine Vision Conference, London, United Kingdom, 2009,1-12.
0
浏览量
473
下载量
3
CSCD
关联资源
相关文章
相关作者
相关机构