浏览全部资源
扫码关注微信
1. 上海大学 机电工程与自动化学院 上海 200072
2. 上海市智能制造及机器人重点实验室 上海,200072
3. 机械系统与振动国家重点实验室 上海,200240
收稿日期:2015-05-11,
修回日期:2015-06-03,
纸质出版日期:2015-08-25
移动端阅览
张旭, 李祥, 屠大维. 相位高度的显函数模型及其标定[J]. 光学精密工程, 2015,23(8): 2384-2392
ZHANG Xu, LI Xiang, TU Da-wei. Explicit phase height model and its calibration[J]. Editorial Office of Optics and Precision Engineering, 2015,23(8): 2384-2392
张旭, 李祥, 屠大维. 相位高度的显函数模型及其标定[J]. 光学精密工程, 2015,23(8): 2384-2392 DOI: 10.3788/OPE.20152308.2384.
ZHANG Xu, LI Xiang, TU Da-wei. Explicit phase height model and its calibration[J]. Editorial Office of Optics and Precision Engineering, 2015,23(8): 2384-2392 DOI: 10.3788/OPE.20152308.2384.
由于传统的相位轮廓术(PMP)使用的相位高度模型参数存储空间大
标定计算成本高
本文由绝对相位与深度坐标的关系推导出相位差高度模型的显函数模型
并提出了一种基于未知标定平面的灵活标定方法。该模型只需9个非共线的像素数据即可计算出模型的15个参数
降低了计算量
节约了内存空间。提出的标定方法无需精密运动台
标定板无需覆盖整个测量范围
无需知道位置姿态
降低了标定成本
提高了标定的灵活性。对提出的模型和标定方法分别进行了仿真和实验
仿真结果验证了相位高度显函数模型的正确性和标定方法的有效性。对提出的模型和标定方法在实际的结构光系统中进行了实验
用标定后的系统对实际物体进行了测量
结果表明三维曲面具有较高的质量
证明了提出方法的可行性。
As the phase height model in traditional Phase Measuring Profilometry(PMP)has a larger storage space and higher calibration cost
this paper deduces an explicit function model of phase difference height according to the relationship between absolute phase and depth coordinate
and proposes a flexible calibration method based on unknown calibration plane. The model can calculate 15 model parameters only by 9 nonlinear pixel data
so it saves the memory space and reduces the computing cost. The proposed calibration method does not need any movement platform and position posture
and brings the advantage of small calibration board and well flexible ability. The simulation and experiment on the model and calibration method are performed. The simulation results verify the validity of explicit function model of phase difference height and the availability of the proposed calibration method. Moreover
an actual experiment for the model and the calibration method is done in a structure light system. The calibrated system is used to test a real objective
and the results show that the 3D curved surface has higher quality
which demonstrates the proposed method is feasibility.
CHEN F, BROWN G, SONG M. Overview of three-dimensional shape measurement using optical methods [J]. Optical Engineering, 2000,39(1):10-22.
GORTHIC S S, RASTOGI P. Fringe projection techniques: Whither we are?[J]. Optics and Lasers in Engineering, 2010, 48(2): 133-140.
刘江, 苗二龙, 曲艺,等. 基于光强自标定移相算法检测光学面形[J]. 光学 精密工程, 2014, 22(8): 2007-2013. LIU J, MIAO E L, QU Y, et al.. Measurement of optical surface based on intensity self-calibration phase-shift algorithm[J]. Opt. Precision Eng., 2014, 22(8): 2007-2013.(in Chinese)
武迎春, 曹益平, 肖焱山. 任意相移最小二乘法迭代的在线三维检测[J]. 光学 精密工程, 2014, 22(5): 1347-1353. WU Y CH, CAO Y P, XIAO Y SH. On-line three-dimensional inspection using randomly phase-shifting fringe based on least-square iteration[J].Opt. Precision Eng., 2014, 22(5): 1347-1353.(in Chinese)
SRINIVASAN V,LIU H C, HALIOUA M.Automated phase-measuring profilometry of 3-D diffuse objects [J].Applied Optics, 1984, 23(18): 3105-3108.
ZHANG S. Recent progresses on real-time 3D shape measurement using digital fringe projection techniques [J]. Optics and Lasers in Engineering,2010, 48(2):149-158.
黄昊,达飞鹏. 小波变换轮廓术中快速相位展开方法研究[J]. 仪器仪表学报, 2012,33(2):397-404. HUANG H,DA F P. Novel phase unwrapping method for wavelet profilometry [J]. Chinese Journal of Scientific Instrument, 2012, 33(2):397-404. (in Chinese)
ZHOU W S,SU X Y. A direct mapping algorithm for phase-measuring profilometry [J].Journal of Modern Optics, 1994, 41:89-94.
ASUNDI A, ZHOU W. Unified calibration technique and its applications in optical triangular profilometry [J]. Applied Optics, 1999,38(16):3556-3561.
XIAO Y S, CAO Y P, WU Y C. Improved algorithm for phase-to-height mapping in phase measuring profilometry [J]. Applied Optics, 2012, 51(8):1149-1155.
GUO H, HE H, YU Y, et al. Least-squares calibration method for fringe projection profilometry [J].Optical Engineering, 2005, 44: 033603-033603.
TAVARES P J,VAZ M A. Linear calibration procedure for the phase-to-height relationship in phase measurement profilometry [J]. Optics communications, 2007, 274(2):307-314.
WEN Y F, LI S K, CHENG H B,et al.. Universal calculation formula and calibration method in Fourier transform profilometry [J]. Applied Optics, 2010, 49(34):6563-6569.
于冲,郭红卫. 条纹投射系统深度标定中的数据处理算法分析[J]. 仪器仪表学报,2013,34(8):1855-1863. YU CH, GUO H W. Analysis of data processing algorithms in depth calibration of fringe projection system [J]. Chinese Journal of Scientific Instrument, 2013, 34(8):1855-1863. (in Chinese)
DU H, WANG Z Y. Three-dimensional shape measurement with an arbitrarily arranged fringe projection profilometry system [J]. Optics Letters, 2007, 32(16):2438-2440.
CUI S C,ZHU X. A generalized reference-plane-based calibration method in optical triangular profilometry [J].Optics Express, 2009, 17(23):20735-20746.
VO M, WANG Z, HOANG T,et al..Flexible calibration technique for fringe-projection-based three-dimensional imaging [J]. Optics Letters, 2010, 35(19):3192-3194.
HUANG L, CHUA P S K, ASUNDI A. Least-squares calibration method for fringe projection profilometry considering camera lens distortion [J]. Applied Optics, 2010, 49(9):1539-1548.
MA S D, ZHU R, QUAN C,et al.. Flexible structured-light-based three-dimensional profile reconstruction method considering lens projection-imaging distortion[J]. Applied Optics, 2012, 51(13):2419-2428.
ZHANG Z Y. A flexible new technique for camera calibration [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(11):1330-1334.
张旭,朱利民,屠大维,等. 基于健壮中国剩余定理的频率选择准则及其在相位解卷绕中的应用[J]. 中国激光,2012, 39(11),1108009. ZHANG XU, ZHU LIMIN. TU DAWEI, et al.. Frequency Selection Rule based Robust Chinese Remainder Theorem and its Application in Phase Unwrapping[J]. Chinese Journal of Lasers, 2012, 39(11), 1108009. (in Chinese)
ZHANG X, ZHU L M. Projector calibration from the camera image point of view [J]. Optical Engineering, 2009, 48(11):117208.
张旭,朱利民. Gamma畸变的相位误差模型与Gamma标定技术[J]. 光学学报,2012,32(4)0412006. ZHANG X, ZHU L M. Phase error model from Gamma distortion and Gamma calibration [J]. Acta Optica Sinica, 2012, 32 (4): 0412006. (in Chinese)
ZHANG X, ZHU L M, LI Y F, et al.. Generic non-sinusoidal fringe model and Gamma calibration in phase measuring profilometry[J]. Journal of the Optical Society of America A, 2012,29(6):1047-1058.
0
浏览量
794
下载量
4
CSCD
关联资源
相关文章
相关作者
相关机构