浏览全部资源
扫码关注微信
北京大学 地球与空间科学学院 北京,100871
收稿日期:2015-04-10,
修回日期:2015-06-04,
纸质出版日期:2015-08-25
移动端阅览
张成业, 秦其明, 陈理等. 高光谱遥感岩矿识别的研究进展[J]. 光学精密工程, 2015,23(8): 2407-2418
ZHANG Cheng-ye, QIN Qi-ming, Chen Li etc. Research and development of mineral identification utilizing hyperspectral remote sensing[J]. Editorial Office of Optics and Precision Engineering, 2015,23(8): 2407-2418
张成业, 秦其明, 陈理等. 高光谱遥感岩矿识别的研究进展[J]. 光学精密工程, 2015,23(8): 2407-2418 DOI: 10.3788/OPE.20152308.2407.
ZHANG Cheng-ye, QIN Qi-ming, Chen Li etc. Research and development of mineral identification utilizing hyperspectral remote sensing[J]. Editorial Office of Optics and Precision Engineering, 2015,23(8): 2407-2418 DOI: 10.3788/OPE.20152308.2407.
分析与综述了当前高光谱遥感岩矿识别研究的进展。论述了岩矿光谱特征的作用机理以及岩矿光谱的特征测量与分析方法。归纳和总结了目前以及未来几年可用于岩矿识别的高光谱遥感探测器件和仪器的特点。对基于光谱吸收特征、完全波形匹配和混合像元分解的3类岩矿识别方法进行了归纳与对比
重点介绍了近年来这类技术的重要成果以及研究热点。最后
从理论、数据、方法以及应用4个方面对当前高光谱遥感岩矿识别面临的主要问题和发展趋势进行了剖析。作者认为
高光谱遥感岩矿识别的整体发展趋势为定性识别向定量化分析发展
在此发展过程中
混合光谱模型的建立与解混、面向岩矿识别的新型高光谱传感器的研制、岩矿信息提取的智能化以及复杂地质环境下的岩矿识别将成为研究的主要方向。
This paper reviews the current progress of mineral identification based on hyperspectral remote sensing. The physicochemical mechanisms of mineral spectra and their feature measurement and analysis are introduced. The properties of current and future main hyperspectral sensors are concluded. Then
three series of methods (based on spectral absorption feature
full spectral profile matching
and spectral unmixing
respectively) for mineral identification based on hyperspectral data sets are comparatively analyzed and summarized. Finally
the main problems of mineral identification by using hyperspectral data on theory
data sets
methods and applications
are analyzed and its developing trends are discussed. It points out that the trend will focus on the direction from the qualitative identification to the quantitative mineral analysis. During this trend
spectral unmixing
the design of new hyperspectral sensors for mineral identification
intellectualization of mineral information extraction
and mineral identification in a complex geological environment will be the main research focuses.
GOETZ A F H. Spectroscopic remote-sensing for geological applications [C]. Proceedings of the Society of Photo-Optical Instrumentation Engineers, Los Angeles, USA: SPIE, 1981(268): 17-21.
GOETZ A. Imaging spectrometry for Earth remote sensing [J]. Science, 1985, 228(4704): 1147-1153.
MAGENDRAN T, SANJEEVI S. Hyperion image analysis and linear spectral unmixing to evaluate the grades of iron ores in parts of Noamundi, Eastern India [J]. International Journal of Applied Earth Observation and Geoinformation, 2014, 26: 413-426.
童庆禧,张兵,郑兰芬. 高光谱遥感-原理、技术与应用[M]. 北京:高等教育出版社,2006: 19-289. TONG Q X, ZHANG B, ZHENG L F. Hyperspectral Remote Sensing [M]. Beijing: Higher Education Press, 2006. (in Chinese)
黄鸿,杨媚,张满菊. 基于稀疏鉴别嵌入的高光谱遥感影像分类[J]. 光学 精密工程, 2013, 21(11): 2922-2930. HUANG H, YANG M, ZHANG M J. Hyperspectral remote sensing image classification based on SDE [J]. Opt. Precision Eng., 2013, 21(11): 2922-2930. (in Chinese)
刘嘉敏,罗甫林,黄鸿,等. 应用相关近邻局部线性嵌入算法的高光谱遥感影像分类[J]. 光学 精密工程, 2014, 22(6): 1668-1676. LIU J M, LUO F L, HUANG H, et al.. Classification of hyperspectral remote sensing images using correlation neighbor LLE [J]. Opt. Precision Eng., 2014, 22(6): 1668-1676. (in Chinese)
鲍一丹,陈纳,何勇,等. 近红外高光谱成像技术快速鉴别国产咖啡豆品种[J]. 光学 精密工程, 2015, 23(2): 349-355. BAO Y D, CHEN N, HE Y, et al.. Rapid identification of coffee bean variety by near infrared hyperspectral imaging technology [J]. Opt. Precision Eng., 2015, 23(2): 349-355. (in Chinese)
MULDER V L, DE BRUIN S, WEYERMANN J, et al.. Characterizing regional soil mineral composition using spectroscopy and geostatistics [J]. Remote Sensing of Environment, 2013, 139: 415-429.
VAN DER MEER F D, VAN DER WERFF H M A, VAN RUITENBEEK F J A, et al.. Multi- and hyperspectral geologic remote sensing: A review [J]. International Journal of Applied Earth Observation and Geoinformation, 2012, 14(1): 112-128.
田丰. 全波段(0.35~25μm)高光谱遥感矿物识别和定量化反演技术研究[D]. 北京:中国地质大学(北京),2010. TIAN F. Identification and quantitative retrival of minerals information integrating VIS-NIR-MIR-TIR (0.35~25μm) hyperspectral data [D]. Beijing: China University of Geoscience (Beijing), 2010. (in Chinese)
HUNT G R. Spectral signatures of particulate minerals in visible and near IR [J]. Geophysics, 1977, 42(3): 501-513.
HUNT G R. Near-infrared (1.3-2.4 Mu-M) spectra of alteration minerals-potential for use in remote-sensing [J]. Geophysics, 1979, 44(12): 1974-1986.
CLARK R N. Spectral properties of mixture of montmorillonite and dark carbon grains: Implications for remote sensing minerals containing chemically and physically absorbed water [J]. Journal of Geophysical Research, 1983, 88:10635-10644.
GAFFEY S J. Spectral reflectance of carbonate minerals in the visible and near infrared (0.35-2.55 microns): anhydrous carbonate minerals [J]. Journal of Geophysical Research, 1987, 92: 1429-1440.
李小文,刘素红. 遥感原理与应用[M]. 北京:科学出版社,2008: 231. LI X W, LIU S H. Principle and Application of Remote Sensing [M]. Beijing: Science Press, 2008: 231. (in Chinese)
CLARK R N, KING T V V, KLEJWA M, et al.. High spectral resolution reflectance spectroscopy of minerals [J]. Journal of Geophysical Research-Solid Earth and Planets, 1990, 95(B8): 12653-12680.
朱振海, 王文彦, 彭希龄. 遥感技术直接探测烃类微渗漏的方法研究[J]. 科学通报, 1990, 16: 1257-1260. ZHU ZH H, WANG W Y, PENG X L. Study on the direct detection of hydrocarbon microleakage using remote sensing [J]. Chinese Science Bulletin, 1990, 16: 1257-1260. (in Chinese)
常青. 甘肃北山南带岩(矿)石波谱特征的初步研究[J]. 甘肃地质学报, 1999, 8(1): 49-56. CHANG Q. Preliminary study on spectrum features of rocks (ores) from southern belt of beishan area in gansu province [J]. Acta Geologica Gansu, 1999, 8(1): 49-56. (in Chinese)
吴昀昭,田庆久,陈骏,等. 基于主成分分析的反射光谱在岩石学中的应用—以哈密地区为例[J]. 岩石学报, 2003, 19(4): 761-766. WU Y ZH, TIAN Q J, CHEN J, et al.. Application of rock laboratorial reflectance spectra in Hami area based on principal component analysis [J]. Acta Petrologica Sinica, 2003, 19(4): 761-766. (in Chinese)
陈明. 基于分形理论的岩矿光谱模型研究[D]. 武汉:华中科技大学,2010. CHEN M. Study on the spectral model of rocks and minerals based on fractal [D]. Wuhan: Huazhong University of Science and Technology, 2010. (in Chinese)
彭杰,李曦,周清,等. 氧化铁对有机质光谱特性的影响分析[J]. 遥感学报, 2013, 17(6): 1396-1412. PENG J, LI X, ZHOU Q, et al.. Influence of iron oxide on the spectral characteristics of organic matter [J]. Journal of Remote Sensing, 2013, 17(6): 1396-1412. (in Chinese)
梁树能,甘甫平,闫柏琨,等. 绿泥石矿物成分与光谱特征关系研究[J]. 光谱学与光谱分析, 2014, 34(7): 1763-1768. LIANG SH N, GAN F P, YAN B K, et al.. A study on the relationship between the comparison and spectral feature parameters in chlorite [J]. Spectroscopy and Spectral Analysis, 2014, 34(7): 1763-1768. (in Chinese)
MURPHY R J, SCHNEIDER S, MONTEIRO S T. Consistency of measurements of wavelength position from hyperspectral imagery: use of the ferric iron crystal field absorption at similar to 900 nm as an indicator of mineralogy[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52: 2843-2857.
周子勇. 高光谱遥感油气勘探进展[J]. 遥感技术与应用, 2014, 29(2): 352-361. ZHOU Z Y. Progress in hyperspectral remote sensing for petroleum prospecting [J]. Remote Sensing Technology and Application, 2014, 29(2): 352-361. (in Chinese)
KRUSE F A, TARANIK J V, COOLBAUGH M, et al.. Effect of reduced spatial resolution on mineral mapping using imaging spectrometry-examples using hyperspectral infrared imager (hyspiri)-simulated data [J]. Remote Sensing, 2011, 3(8): 1584-1602.
MIELKE C, BOESCHE N K, ROGASS C, et al.. Spaceborne mine waste mineralogy monitoring in south africa, applications for modern push-broom missions: Hyperion/OLI and EnMAP/Sentinel-2 [J]. Remote Sensing, 2014, 6(8): 6790-6816.
ROGGE D, RIVARD B, SEGL K, et al.. Mapping of NiCu-PGE ore hosting ultramafic rocks using airborne and simulated EnMAP hyperspectral imagery, Nunavik, Canada [J]. Remote Sensing of Environment, 2014, 152: 302-17.
EO-1 User Guide Version 2.3, USGS Earth Resources Observation System Data Centre EDC [EB], 2003.7.15.
天宫一号空间应用推广服务平台[OL]. [2015-3-08] http://www.msadc.cn/sjcp/.
ROBERTS D A, QUATTROCHI D A, HULLEY G C, et al.. Synergies between VSWIR and TIR data for the urban environment: An evaluation of the potential for the Hyperspectral Infrared Imager (HyspIRI) Decadal Survey mission [J]. Remote Sensing of Environment, 2012, 117(0): 83-101.
BERGERON M, HOLLINGER A, STAENZ K, et al.. Hyperspectral Environment and Resource Observer (HERO) mission [J]. Canadian Journal of Remote Sensing, 2008, 341: S1-S11.
GALEAZZI C, SACCHETTI A, CISBANI A, et al.. The PRISMA program [C]. 2008 IEEE International Geoscience and Remote Sensing Symposium, Boston, MA, USA: IGARSS, 2008, 4(IV):105-108.
LABATE D, CECCHERINI M, CISBANI A, et al.. The PRISMA payload optomechanical design, a high performance instrument for a new hyperspectral mission [J]. Acta Astronautica, 2009, 65(9-10): 1429-1436.
KRUSE F A. Preliminary results-hyperspectral mapping of coral reef systems using EO-1 Hyperion Buck Island and U.S Virgin Islands [C]. Proceedings of the 12th JPL Airborne Geoscience Workshop, Pasadena, California, USA: JPL Publication, 2003, 04-6: 157-173.
CLARK R N, SWAYZE G A S, LIVO K E, et al.. Imaging spectroscopy: Earth and planetary remote sensing with the USGS Tetracorder and Expert Systems [J]. Journal of Geophysical Research, 2003, 108 (E12): 5131.
甘甫平,王润生. 遥感岩矿信息提取基础与技术方法研究[M]. 北京:地质出版社,2004: 1-119. GAN F P, WANG R SH. Research of Information Extraction Foundation and Technical Methods for Remote Sensing Information [M]. Beijing: Geological Publishing House, 2004. (in Chinese)
VAN DER MEER F D. Analysis of spectral absorption features in hyperspectral imagery [J]. International Journal of Applied Earth Observation and Geoinformation, 2004, 5: 55-68.
甘甫平,王润生,马蔼乃,等. 光谱遥感岩矿识别基础与技术研究进展[J]. 遥感技术与应用, 2002, 17(3):140-147. GAN F P, WANG R SH, MA A N, et al.. The development and tendency of both basis and techniques of discrimination for minerals and rocks using spectral remote sensing data [J]. Remote Sensing Technology and Application, 2002, 17(3): 140-147. (in Chinese)
CROWLEY J K, BRICKEY D W, ROWAN L C. Airborne imaging spectrometer data of the Ruby Mountains, Montana - mineral discrimination using relative absorption band-depth images [J]. Remote Sensing of Environment, 1989, 29(2): 121-134.
王永. 基于遥感技术的龙门山前带烃类微渗漏信息提取[J]. 中国煤炭地质, 2010, 22(10): 10-16. WANG Y. Hydrocarbon microseepage information extracting through remote sensing technology in front range of longmenshan [J]. Coal Geology of China, 2010, 22(10): 10-16. (in Chinese)
杨燕杰,赵英俊. 高光谱在油气勘探中的国内外研究现状[J]. 科学技术与工程, 2011, 11(6): 1290-1299. YANG Y J, ZHAO Y J. The hyperspectral research status at home and abroad in oil exploration [J]. Science Technology and Engineering, 2011, 11(6): 1290-1299. (in Chinese)
CLARK R N, GALLAGHER A J, SWAYZE G A. Material absorption band depth mapping of imaging spectrometer data using the complete band shape least-squares algorithm simultaneously fit to multiple spectral features from multiple materials [C]. Proceedings of the Third Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) Workshop, JPL Publication, 1990, 90-94:176 -186.
CHEN X, WARNER T A, CAMPAGNA D J. Integrating visible, near-infrared and short-wave infrared hyperspectral and multispectral thermal imagery for geological mapping at Cuprite, Nevada [J]. Remote Sensing of Environment, 2007, 110(3): 344-356.
许宁,胡玉新,雷斌,等. 基于改进光谱特征拟合算法的高光谱数据矿物信息提取[J]. 光谱学与光谱分析, 2011,31(6):1639-1643. XU N, HU Y X, LEI B, et al.. Mineral information extraction for hyperspectral image based on modified spectral feature fitting algorithm [J]. Spectroscopy and Spectral Analysis, 2011,31(6):1639-1643. (in Chinese)
张宗贵,王润生,郭小方,等. 基于地物光谱特征的成像光谱遥感矿物识别方法[J]. 地学前缘, 2003,10(2):437-443. ZHANG Z G, WANG R SH, GUO X F, et al.. Mineral recognition method by spectrometry remote sensing based on material spectral characteristics [J]. Earth Science Frontiers, 2003,10(2):437-443. (in Chinese)
甘甫平, 王润生,马蔼乃. 基于特征谱带的高光谱遥感矿物谱系识别[J]. 地学前缘, 2003,10(2):445-454. GAN F P, WANG R SH, MA A N. Spectral identification tree(sit) for mineral extraction based on spectral characteristics of minerals [J]. Earth Science Frontiers, 2003,10(2):445-454. (in Chinese)
车永飞, 赵英俊, 伊丕源,等. 基于光谱主次吸收谱带组合特征相似性测度的高光谱遥感矿物信息提取[J]. 科学技术与工程, 2014, 14(34): 1-5. CHE Y F, ZHAO Y J, YI P Y, et al.. Hyperspectral remote sensing mineral information extraction based on the spectral primary and secondary absorption bands combination features of spectral similarity measure[J]. Science Technology and Engineering, 2014, 14(34): 1-5. (in Chinese)
贺金鑫, 陈圣波, 王阳,等. 一种基于朴素贝叶斯分类模型的高光谱矿物精确识别方法[J]. 光谱学与光谱分析, 2014, 34(2): 505-509. HE J X, CHEN SH B, WANG Y, et al.. An accurate approach to hyperspectral mineral identification based naive Bayesian classification model [J]. Spectroscopy and Spectral Analysis, 2014, 34(2): 505-509. (in Chinese)
FENSTERMAKER L K, MILLER J R. Identification of fluvially redistributed mill tailings using high-spectral-resolution aircraft data [J]. Photogrammetric Engineering and Remote Sensing, 1994, 60(8): 989-995.
燕守勋,张兵,赵永超,等. 高光谱遥感岩矿识别填图的技术流程与主要技术方法综述[J]. 遥感技术与应用, 2004, 19(1): 52-63. YAN SH X, ZHANG B, ZHAO Y CH,et al.. Summarizing the technical flow and main approaches for discrimination and mapping of rocks and minerals using hyperspectral remote sensing [J]. Remote Sensing Technology and Application, 2004, 19(1): 52-63. (in Chinese)
刘汉湖, 杨武年,杨容浩. 高光谱遥感岩矿识别方法对比研究[J]. 地质与勘探, 2013,49(2):359-366. LIU H H, YANG W N, YANG R H. A comparative study on the mineral identification methods using hyperspectral remote sensing data [J]. Geology and Exploration, 2013,49(2):359-366. (in Chinese)
KRUSE F A, LEFKOFF A B, DIETZ J B. Expert system-based mineral mapping in northern death-valley, californianevada, using the Airborne Visible Infrared Imaging Spectrometer (AVIRIS) [J]. Remote Sensing of Environment, 1993, 44: 309-336.
何中海,何彬彬. 基于权重光谱角制图的高光谱矿物填图方法[J]. 光谱学与光谱分析, 2011, 31(8): 2200-2204. HE ZH H, HE B B. Weight Spectral Angle Mapper (WSAM) method for hyperspectral mineral mapping [J]. Spectroscopy and Spectral Analysis, 2011, 31(8): 2200-2204. (in Chinese)
ZHANG X Y, LI P J. Litho logical mapping from hyperspectral data by improved use of spectral angle mapper [J]. International Journal of Applied Earth Observation and Geoinformation, 2014, 31: 95-109.
MOLAN Y E, REFAHI D, TARASHTI A H. Mineral mapping in the Maherabad area, eastern Iran, using the HyMap remote sensing data [J]. International Journal of Applied Earth Observation and Geoinformation, 2014, 27(B): 117-127.
CHEN X, WARNER T A, CAMPAGNA D J.. Integrating visible, near-infrared and short-wave infrared hyperspectral and multispectral thermal imagery for geological mapping at Cuprite, Nevada: a rule-based system [J]. International Journal of Remote Sensing, 2010, 31(7): 1733-52.
MOUNTRAKIS G, IM J, OGOLE C. Support vector machines in remote sensing: A review [J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2011, 66(3): 247-259.
ZHANG B, SUN X, GAO L R, et al.. Endmember extraction of hyperspectral remote sensing images based on the Ant Colony Optimization (ACO) algorithm [J]. IEEE Transactions on Geoscience and Remote Sensing, 2011,49(7):2635-2646.
ZHANG B, SUN X, GAO L R, et al.. Endmember extraction of hyperspectral remote sensing images based on the discrete particle swarm optimization algorithm [J]. IEEE Transactions on Geoscience and Remote Sensing, 2011,49(11): 4173-4176.
ZHANG B, GAO J W, GAO L R, et al.. Improvements in the ant colony optimization algorithm for endmember extraction from hyperspectral images [J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2013,6(2SI2):522-530.
赵欣梅. 基于烃类微渗漏理论的高光谱遥感油气异常探测方法研究[D]. 北京:中国地质大学,2007. ZHAO X M. Study on using hyperspectral remote sensing to explore oil & gas resources based on hydrocarbon microseepage theory [D]. Beijing: China University of Geoscience, 2007. (in Chinese)
NEVILLE R A, LEVESQUE J, STAENZ K, et al.. Spectral unmixing of hyperspectral imagery for mineral exploration: comparison of results from SFSI and AVIRIS [J]. Canadian Journal of Remote Sensing, 2003, 29(1): 99-110.
ROGGE D M, RIVARD B, ZHANG J K, et al.. Iterative spectral unmixing for optimizing per-pixel endmember sets [J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(12): 3725-3736.
HEYLEN R, BURAZEROVIC D, SCHEUNDERS P, Fully constrained least squares spectral unmixing by simplex projection [J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(11SI1): 4112-4122.
刘凯, 张立福, 覃环虎. 基于权重光谱解混方法的高光谱矿物填图[J]. 遥感学报,2013,17( 3):609-625. LIU K, ZHANG L F, QIN H H. Weighted spectral unmixing method for hyperspectral mineral mapping [J]. Journal of Remote Sensing, 2013, 17( 3): 609-625. (in Chinese)
ZHANG B, ZHUANG L N, GAO L R, et al.. PSO-EM: a hyperspectral unmixing algorithm based on normal compositional model [J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(12): 7782-7792.
POULET F, ERARD S. Nonlinear spectral mixing: Quantitative analysis of laboratory mineral mixtures [J]. Journal of Geophysical Research-Planets, 2004, 109(E0):E02009.
闫柏琨,李建忠,甘甫平,等. 一种月壤主要矿物组分含量反演的光谱解混方法[J]. 光谱学与光谱分析, 2012, 32(12): 3335-3340. YAN B K, LI J ZH, GAN F P, et al.. A spectral unmixing method of estimating main minerals abundance of lunar soils [J]. Spectroscopy and Spectral Analysis, 2012, 32(12): 3335-3340. (in Chinese)
ALTMANN Y, DOBIGEON N, TOURNERET J Y. Nonlinearity detection in hyperspectral images using a polynomial post-nonlinear mixing model [J]. IEEE Transactions on Image Processing, 2013, 22(4): 1267-1276.
HEYLEN R, PARENTE M, GADER P. A review of nonlinear hyperspectral unmixing methods [J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(6SI): 1844-1868.
CALLICO G M, LOPEZ S, AGUILAR B, et al.. Parallel implementation of the modified vertex component analysis algorithm for hyperspectral unmixing using OpenCL [J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(8): 3650-3659.
BERNABE S, SANCHEZ S, PLAZA A, et al.. Hyperspectral unmixing on GPUs and multi-core processors: a comparison [J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2013, 6(3SI): 1386-1398.
GONZALEZ C, RESANO J, PLAZA A, et al.. FPGA implementation of abundance estimation for spectral unmixing of hyperspectral data using the image space reconstruction algorithm[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2012,5(1SI): 248-261.
SANCHEZ S, PAZ A, MARTIN G, et al.. Parallel unmixing of remotely sensed hyperspectral images on commodity graphics processing units [J]. Concurrency and Computation-Practice & Experience, 2011, 23(13): 1538-1557.
陈圣波,刘彦丽,杨倩,等. 植被覆盖区卫星高光谱遥感岩性分类[J]. 吉林大学学报:地球科学版, 2012(6):1959-1965. CHEN SH B, LIU Y L, YANG Q, et al.. Lithologic classification from hyperspectral data in dense vegetation cover area [J]. Journal of Jilin University:Earth Science Edition, 2012(6):1959-1965. (in Chinese)
刘彦丽. 植被覆盖区岩矿信息高光谱遥感提取方法研究[D]. 长春:吉林大学, 2013. LIU Y L. Study on hyperspectral remote sensing methods for rock classification and mineral identification in vegetation covered area [D]. Changchun: Jilin University, 2013. (in Chinese)
宫鹏. 遥感科学与技术中的一些前沿问题[J]. 遥感学报, 2009, 13(1): 13-23. GONG P. Some forefront problems on remote sensing science and technology [J]. Journal of Remote Sensing, 2009, 13(1):13-23. (in Chinese)
0
浏览量
527
下载量
18
CSCD
关联资源
相关文章
相关作者
相关机构