浏览全部资源
扫码关注微信
1. 浙江大学 流体动力与机电系统国家重点实验室,浙江 杭州,310027
2. 浙江省建筑科学设计研究院有限公司,浙江 杭州,310012
3. 中国计量学院 计量测试工程学院,浙江 杭州,310018
收稿日期:2015-05-07,
修回日期:2015-07-02,
纸质出版日期:2015-09-25
移动端阅览
杨辰龙, 陈越超, 叶钱等. 金属材料小缺陷超声反射信号建模及识别[J]. 光学精密工程, 2015,23(9): 2635-2644
YANG Chen-long, CHEN Yue-chao, YE Qian etc. Ultrasonic echo signal modeling and identification for minor defects in metallic materials[J]. Editorial Office of Optics and Precision Engineering, 2015,23(9): 2635-2644
杨辰龙, 陈越超, 叶钱等. 金属材料小缺陷超声反射信号建模及识别[J]. 光学精密工程, 2015,23(9): 2635-2644 DOI: 10.3788/OPE.20152309.2635.
YANG Chen-long, CHEN Yue-chao, YE Qian etc. Ultrasonic echo signal modeling and identification for minor defects in metallic materials[J]. Editorial Office of Optics and Precision Engineering, 2015,23(9): 2635-2644 DOI: 10.3788/OPE.20152309.2635.
为了能从含噪声金属材料超声检测信号中有效识别出微小缺陷回波
建立了金属材料超声反射信号模型并提出了基于相关系数的微小缺陷回波识别方法。对含微小缺陷金属材料超声脉冲反射信号的成分进行分析
建立了基于散射声场与高斯回波理论的优化超声回波模型。设计了超声缺陷回波位置识别方法。该方法对超声脉冲反射信号去噪后
取探头发射脉冲信号为参考信号;然后与去噪后的信号逐段求解相关系数;最后对该相关系数序列进行阈值化处理
获得缺陷回波在超声回波信号中的位置。将利用上述优化超声回波模型生成的超声反射信号及其频谱与实验获得的金属材料超声反射信号及其频谱进行了对比
结果表明:两者的时频域特征具有一致性。当将阈值设定为相关系数序列最大值的60%时
能够有效从超声背散射信号中识别出金属材料微小缺陷回波。
To identify the minor defect echo from ultrasonic testing signals containing the noise of metallic materials
an ultrasonic echo signal model was established and a minor defect echo identification method was put forward. The composition of ultrasonic pulse echo signals with minor defects obtained from metallic materials was analyzed
and then optimized ultrasonic echo model was established based on the Gaussian echo theory and a scattering sound field. The identification method for echo locations of ultrasonic minor defects was designed. By proposed method
the ultrasonic pulse echo signal was first denoised. Then the pulse signal from a probe was taken as the reference signal and the correlation coefficient between reference signal and denoised signal was piecewise calculated. Finally
the correlation coefficient sequence was processed by threshold method and the location of flaw echo in the ultrasonic echo signal was obtained. The simulation signal and frequency spectra generated by the optimized ultrasonic echo model were compared with those of experimental ultrasonic signal. The experiment results show that the time and frequency domain features of the two signals are in good agreements. When the threshold is set as 60 percent of the max value of the correlation coefficient sequence
the minor flaw echo can be accurately identified from the ultrasonic echo signals of metallic materials.
王少军,俞厚德,钱耀洲,等. 基于超声散射法的微小缺陷及近表面缺陷的检测[J]. 无损检测,2014,36(1):49-53. WANG SH J, YU H D, QIAN Y ZH, et al.. The detection of tinny defect and near surface defect based on ultrasound scattering technique [J]. Nondestructive Testing, 2014, 36(1):49-53. (in Chinese)
史亦伟,梁菁. 超声检测材料中微小缺陷的当量关系研究[C]. 中国机械工程学会无损检测分会第七届年会, 汕头,1999:243-246. SHI Y W, LIANG J. Research on the relationship between echo amplitude and the size of small defects by ultrasonic inspection [C].The Seven Conference of CHSNDT and International Symposium on NDT, Shantou, 1999:243-246. (in Chinese)
柯常波,陈铁群. 粗晶材料超声无损检测信号处理技术发展趋势[J]. 物理测试,2006,24(5):37-41. KE CH B, CHEN T Q. New trends of signal processing of ultrasonic inspection in coarse grain materials [J].Physics Examination and Testing, 2006, 24(5):37-41. (in Chinese)
DEMIRLI R.Model based estimation of ultrasonic echoes; analysis, algorithms, and applications [D]. Chicago:Illinois Institute of Technology, 2001.
汪艳,张小凤,张光斌,等. 基于高斯模型的多重超声回波信号重数估计[J]. 陕西师范大学学报:自然科学版,2015,43(1):30-35. WANG Y, ZHANG X F, ZHANG G B, et al.. Estimating the number of multiple echo signals based on the Gaussian ultrasonic echo model [J]. Journal of Shanxi Normal University:Natural Science Edition, 2015, 43(1):30-35. (in Chinese)
刘镇清. 粗晶材料超声检测信号模型及其通过窄带滤波器分析[J]. 电子学报,2002,30(4):598-600. LIU ZH Q. An ultrasonic testing model for large grained materials and its output properties of narrowband filter [J]. Acta Electronica Sinica, 2002, 30(4):598-600. (in Chinese)
ROSE J L.Ultrasonic Waves in Solid Media [M]. Cambridge:Cambridge University Press, 1999.
PRAVEEN A, VIJAYAREKHA K, ABRAHAM S T. Signal quality enhancement using higher order wavelets for ultrasonic TOFD signals from austenitic stainless steel welds [J]. Ultrasonics, 2013, 53(7):1288-1292.
WEI Y Q, TANG R, HOU L, et al.. Study on noise reduction using a wavelet packet for ultrasonic flaw detection signal of a small diameter steel pipe with a thick wall [J]. International Journal of Acoustics and Vibration, 2014, 19(3):198-202.
罗玉昆,罗诗途,罗飞路,等. 激光超声信号去噪的经验模态分解实现及改进[J]. 光学 精密工程,2013,21(2):479-487. LUO Y K, LUO SH T, LUO F L, et al.. Realization and improvement of laser ultrasonic signal denoising based on empirical mode decomposition [J]. Opt. Precision Eng., 2013, 21(2):479-487. (in Chinese)
LI M H. A rapid approach to speckle noise reduction in ultrasonic non-destructive evaluation using matched filters [C]. 2014 IEEE International Ultrasonics Symposium Proceedings, Chicago, USA, 2014, 45-48.
崔园园,王伯雄,柳建楠,等. 数字超声波信号中有色噪声的自适应滤波[J]. 光学 精密工程,2014,22(12):3377-3383. CUI Y Y, WANG B X, LIU J N, et al.. Adaptive filtering for colored noise in digital ultrasonic signals [J]. Opt. Precision Eng., 2014, 22(12):3377-3383. (in Chinese)
刘继忠,周晓军,蒋志峰. 数据融合技术在棒材缺陷超声识别中的应用[J]. 农业机械学报,2006,37(1):160-162. LIU J ZH, ZHOU X J, JIANG ZH F. Application of data fusion based flaw recognition in cylinder ingots [J]. Transactions of the Chinese Society for Agricultural Machinery, 2006, 37(1):160-162. (in Chinese)
唐国维,巩淼,张方舟,等. 基于模糊神经网络的焊缝缺陷识别的研究[J]. 计算机技术与发展,2014,24(5):243-247. TANG G W, GONG M, ZHANG F ZH, et al.. Research on weld defects distinguishing based on fuzzy neural networks [J]. Computer Technology and Development, 2014, 24(5):243-247. (in Chinese)
DONOHUE D K. Maximum likelihood estimation of A-Scan amplitudes for coherent targets in media of unresolvable scatterers [J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 1992, 39(3):422-431.
SANIIE J, WANG T. Statistical evaluation of backscattered ultrasonic grain signals [J].Journal of The Acoustical Society of America, 1988, 84(1):400-408.
0
浏览量
588
下载量
8
CSCD
关联资源
相关文章
相关作者
相关机构