浏览全部资源
扫码关注微信
中国科学院 长春光学精密机械与物理研究所,吉林 长春,中国,130033
收稿日期:2015-01-09,
修回日期:2015-03-24,
纸质出版日期:2015-10-25
移动端阅览
衣小龙, 杨振岭, 叶新等. 低温辐射计斜底腔吸收比测量[J]. 光学精密工程, 2015,23(10): 2733-2739
YI Xiao-long, YANG Zhen-ling, YE Xin etc. Absorptance measurement for sloping bottom cavity of cryogenic radiometer[J]. Editorial Office of Optics and Precision Engineering, 2015,23(10): 2733-2739
衣小龙, 杨振岭, 叶新等. 低温辐射计斜底腔吸收比测量[J]. 光学精密工程, 2015,23(10): 2733-2739 DOI: 10.3788/OPE.20152310.2733.
YI Xiao-long, YANG Zhen-ling, YE Xin etc. Absorptance measurement for sloping bottom cavity of cryogenic radiometer[J]. Editorial Office of Optics and Precision Engineering, 2015,23(10): 2733-2739 DOI: 10.3788/OPE.20152310.2733.
考虑在轨绝对辐射定标基准辐射计(ARCPR)要求其测量太阳总辐照度(TSI)的TSI腔的吸收比优于0.999 9
同时测量不确定度在0.001%以下
本文提出采用在空间和低温环境下性能优越的圆柱形斜底腔作为标定太阳总辐照度的黑体腔
并对斜底腔吸收比进行了测量与研究。介绍了斜底腔的特性
分析了低温辐射计多使用斜底腔作为黑体腔的原因。阐述了替代法测量腔体吸收比的原理
增加了参考光路用于监测激光功率
以提高测量重复性和准确性。通过测量信号与参考光路信号的比值计算了斜体腔的吸收比
并对测量结果进行了不确定度分析。测试实验显示
斜底腔吸收比为0.999 9280.000 005
优于ARCPR对标定黑体腔的要求
验证了将斜底腔作为测量太阳总辐照度的TSI腔的可行性。实验还表明:计算信号电压与参考电压比值
通过比值计算腔体吸收比的方法可以提高测量结果的不确定度
适用于测量超高吸收比腔体的吸收比。
The Total Solar Irradiance (TSI) cavity in an Absolute Radiance Calibration Primary Radiometer(ARCPR) for space remote sensing should have an absorptance more than 0.999 9 and the measurement uncertainty superior to 0.001%. Therefore
a cylindrical sloping bottom cavity was used as a receiver cavity for calibration of the TSI because of its superior performance in the space and cryogenic environments. Then
the absorptance of the cylindrical sloping bottom cavity was measured. The characteristics of the cylindrical sloping bottom cavity were introduced
and why the cavity was used as the receiver cavity in cryogenic radiometer was analyzed. Furthermore
the principle of the absorptance measured by a substitution method was expounded. A reference light path was added to monitor the stability of a laser to improve the measurement repeatability and accuracy. Finally
the absorptance of sloping bottom cavity was measured using this method
and the uncertainty of measurement results was analyzed. Experimental results indicate that the absorptance of sloping bottom cavity is 0.999 9280.000 005
superior to that of the calibration standard of the blackbody cavity
which verifies it is feasibility to use the sloping bottom cavity as the TSI cavity for measuring the TSI. The experiments also verify that the ratio of single voltage and reference voltage could be used to calculate the cavity absorptance
and could improve the uncertainty of measurement result. This method is fit for measuring the absorptance of an ultra high absorptance cavity.
方伟,金锡峰. 一种双锥腔补偿型绝对辐射计的研制[J]. 太阳能学报,1992,13(4):406-411. FANG W, JIN X F. Development of a compensate cavity absolute radiometer[J].Acta Energiae Solaris Sinica, 1992, 13(4):406-411.(in Chinese)
[2] WANG H R, WANG Y P. Spaceborne radiometers for measuring total solar irradiance[J].Chinese Optics, 2012, 5(6):555-565.
[3] 方伟,禹秉熙,姚海顺,等. 太阳辐照绝对辐射计与国际比对[J]. 光学学报,2003,23(1): 112-116. FANG W, YU B X, YAO H SH, et al.. Solar irradiance absolute radiometer and international comparison[J]. Acta Optica Sinica, 2003, 23(1):112-116.(in Chinese)
[4] PROKHOROV A V, HANSSENANSSEN L M. Effective emissivity of a cylindrical cavity with an inclined bottom: I.Isothermal cavity[J]. Metrologia, 2004,41:421-431.
[5] GENTILE T R, HOUSTON J M, HARDIS J E,et al.. National institute of standards and technology high-accuracy cryogenic radiometer[J]. Applied Optics, 1996, 3(7):1056-1068.
[6] FANG Q Q, FANG W, WANG Y P, et al.. New shape of blackbody cavity: conical generatrix with an inclined bottom[J]. Optical Engineering, 2012,51(8):086401-1-086401-5.
[7] PEARSON D A, ZHANG Z M. Thermal-electrical modeling of absolute cryogenic radiometers[J]. Cryogenics, 1999,39:299-309.
[8] HOUSTON J M, RICE J P. NIST reference cryogenic radiometer designed for versatile performance[J]. Metrologia, 2006, 43:31-35.
[9] DOKTORWURDE. Metrology of Solar Irradiance[D]. Zur,Universitat Zurich,2011.
[10] 白山.基于低温辐射计的探测器光谱响应度相关测量技术研究[D]. 北京:中国计量科学研究院光学与激光计量科学研究所,2012. BAI SH. Research on the Measurement Techniques of Detector Spectral Response Based on Cryogenic Radiometer[D].Beijing: National Institute of Metrology, P. R. China, 2012.(in Chinese)
[11] 黄强先,余夫领,宫二敏,等. 零阿贝误差的纳米三坐标测量机工作台及误差分析[J]. 光学 精密工程,2013,21(3):664-671. HUANG Q X, YU F L, GONG E M, et al.. Nano-CMM stage with zero abbe Error error and its error analysis[J]. Opt. Precision Eng., 2013,21(3):664-671.(in Chinese)
[12] 石照耀,张宇,张白. 三坐标机测量齿轮齿廓的不确定度评价[J]. 光学 精密工程,2012,20(4):766-770. SHI ZH Y, ZHANG Y, ZHANG B. Uncertainty evaluation of CMM measurement for gear profile[J]. Opt. Precision Eng., 2012,20(4):766-770.(in Chinese)
[13] 冉旭,吴丹,陈炳德,等. 最佳估算加不确定性分析方法及其应用研究[J]. 核动力工程,2013,34(3):120-123. RAN X, WU D, CHEN B D, et al.. Best estimate plus uncertainty method and its application[J]. Nuclear Power Engineering, 2013,34(3):120-123.(in Chinese)
[14] 夏桂锁,廖城,伏燕军. 平行双关节坐标测量机的标定及不确定度评价[J]. 光学 精密工程,2014,22(5):1227-1234. XIA G S, LIAO CH, FU Y J. Calibration and uncertainty evaluation of double parallel-joint coordinate measuring machine[J].Opt. Precision Eng., 2014,22(5):1227-1234.(in Chinese)
[15] 田志辉,史振广,刘伟奇,等. 曲率半径的高精度测量及其不确定度[J]. 光学 精密工程,2013,21(10):2495-2501. TIAN ZH H, SHI ZH G, LIU W Q, et al.. High-accuracy measurement for radius of curvature and its uncertainties[J]. Opt. Precision Eng., 2013,21(10):2495-2501.(in Chinese)
0
浏览量
545
下载量
5
CSCD
关联资源
相关文章
相关作者
相关机构