浏览全部资源
扫码关注微信
哈尔滨工业大学 电气工程及自动化学院,黑龙江 哈尔滨 150001
收稿日期:2015-04-16,
修回日期:2015-05-16,
纸质出版日期:2015-10-25
移动端阅览
卢丙辉, 刘国栋*, 孙和义等. 微球表面形貌检测中的偏心误差分析与修正[J]. 光学精密工程, 2015,23(10): 2794-2802
LU Bing-hui, LIU Guo-dong*, SUN He-yi etc. Analysis and correction of eccentricity errors in microsphere surface inspection[J]. Editorial Office of Optics and Precision Engineering, 2015,23(10): 2794-2802
卢丙辉, 刘国栋*, 孙和义等. 微球表面形貌检测中的偏心误差分析与修正[J]. 光学精密工程, 2015,23(10): 2794-2802 DOI: 10.3788/OPE.20152310.2794.
LU Bing-hui, LIU Guo-dong*, SUN He-yi etc. Analysis and correction of eccentricity errors in microsphere surface inspection[J]. Editorial Office of Optics and Precision Engineering, 2015,23(10): 2794-2802 DOI: 10.3788/OPE.20152310.2794.
由于使用传统的误差修正方法进行微球形貌检测会有过大的残差
本文提出了一种新的偏心误差修正方法来提高微球表面形貌检测的精度和效率。在分析了横向偏心和轴向偏心引入光程差数学模型的基础上
推导了偏心误差的高阶近似模型
提出了小曲率半径下基于Zernike多项式拟合的偏心误差修正方法
并给出误差修正的流程及相关参数的标定方法。通过对2 mm直径的微球的表面形貌检测验证了所提出误差修正方法的可行性和有效性。结果表明:相对于零条纹时的形貌误差基准
采用本文提出的方法修正后的残余形貌误差峰谷(PV)值为0.081 5λ
均方根(RMS)值为0.016 1λ
比传统方法修正效果更好
能够满足高精度微球形貌检测的需求。
When traditional error correction methods are used in microsphere surface inspection
it might show a larger residual. Therefore
this paper proposes a surface topography to correct the eccentricity of microsphere and to improve the measuring precision and efficiency. Based on the analysis of mathematic model of optical path difference introduced by the lateral and axial eccentricities
the high-order approximation model of eccentricity error was deduced. A eccentricity correction method for small sphere curvature radius was proposed on the basis of Zernike polynomials fitting. The correction flow was provided for illustrating the detail
and the corresponding calibration method of relative parameters was given. An experiment for the surface topography of a microphere with a diameter of 2 mm was performed to verify the feasibility and effectiveness of the correction method. The experimental results relative to the standard profile data indicate that the proposed correction method offers the surface errors(peak-valley(PV) and root-mean-square(RMS) values) to be 0.081 5λ and 0.016 1λ
respectively
which are more excellent than that of the traditional methods. The method is able to meet the demand of high precise inspection of microspheres.
郭俊杰,邱丽荣,王允,等. 用于惯性约束聚变靶丸测量的激光差动共焦传感器[J]. 光学 精密工程,2013,21(3):644-651 GUO J J, QIU L R, WANG R, et al.. Laser differential cofocal sensor for ICF capsule measuerment[J]. Opt. Precision Eng., 2013, 21(3): 644-651. (in Chinese)
刘国淦,张学军,王权陡,等. 光纤点衍射干涉仪的技术研究[J]. 光学 精密工程,2001,9(2):142-145. LIU G J, ZHANG X J, WANG Q T, et al.. Fiber point diffraction interferometer[J]. Opt. Precision Eng., 2001, 9(2): 142-145. (in Chinese)
邵晶,马冬梅,张海涛,等. 极小孔径衍射波前测试分析[J]. 光学 精密工程,2014,22(10):2639-2644. SHAO J, MA D M, ZHANG H T, et al.. Evaluation of wavefront diffracted from ultra small aperture[J]. Opt. Precision Eng., 2014, 22(10): 2639-2644. (in Chinese)
刘乾,王洋,吉方,等. 基于频域分析的抗振移相干涉测量[J]. 光学 精密工程,2015,23(1):252-259. LIU Q, WANG Y, JI F, et al.. Vibration-insensitive phase-shifting interferometry based on frequency domain analysis[J]. Opt. Precision Eng., 2015, 23(1):252-259. (in Chinese)
马小军,高党忠,叶成刚,等. 相移动干涉法测量ICF微球内表面粗糙度[J]. 强激光与粒子束,2008,20(2):224-228. MA X J, GAO D ZH, YE CH G, et al.. Interior surface soughness of ICF micro-shells with phase shift interference technique[J]. High Power Laser and Particle Beams, 2008,20(2):224-228. (in Chinese)
WANG D D, YANG Y Y, CHEN CH, et al.. Calibration of geometrical systematic error in high-precision spherical surface measurement[J]. Optics Communications, 2011, 284(16): 3878-3885.
单宝忠,王淑岩,牛憨笨,等. Zernike多项式拟合方法及应用[J]. 光学 精密工程,2002,10(3):318-323. SHAN B ZH, WANG SH Y, NIU H B, et al.. Zernike polynomial fitting method and its application[J]. Opt. Precision Eng., 2002, 10(3): 318-323. (in Chinese)
WANG D D, YANG Y Y, CHEN CH, et al.. Misalignment aberrations calibration in testing of high-numerical-aperture spherical surfaces[J]. Applied Optics, 2011, 50(14): 2024-2031.
刘江,苗二龙,曲艺,等. 基于光强自标定移相算法检测光学面形[J]. 光学 精密工程,2014,22(8):2007-2013. LIU J, MIAO E L, QU Y, et al.. Measurement of optical surface based on intensity self-calibration phase-shift algorithm[J]. Opt. Precision Eng., 2014, 22(8): 2007-2013. (in Chinese)
许幸芬,曹益平. 基于统计逼近的Stoilov改进算法[J]. 光学学报,2009,29(3):733-737 XU X F, CAO Y P. An improved Stoilov algorithm based on statistical approach[J]. Acta Optica Sinica., 2009, 29(3): 733-737. (in Chinese)
钱晓凡,李斌,李兴华,等. 横向剪切最小二乘相位解包裹算法的改进[J]. 中国激光,2012,39(11):0209001. QIAN X F, LI B, LI X H, et al.. Improvement of least-square phase umwrapping algorithm based on lateral shearing interferometry[J]. Chinese Journal of Lasers, 2012, 39(11): 0209001. (in Chinese)
钱晓凡,饶帆,李兴华,等. 精确最小二乘相位解包裹算法[J]. 中国激光,2012,39(2):0209001. QIAN X F, RAO F, LI X H,et al.. Accurate least-squares phase umwrapping algorithm[J].Chinese Journal of Lasers, 2012, 39(2): 0209001. (in Chinese)
0
浏览量
674
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构