浏览全部资源
扫码关注微信
1. 中国科学院 光电技术研究所,四川 成都,610209
2. 中国科学院大学 北京,中国,100049
3. 中国科学院 自适应光学重点实验室, 四川 成都 610209
收稿日期:2015-03-23,
修回日期:2015-06-05,
纸质出版日期:2015-10-25
移动端阅览
凡木文, 黄林海, 李梅等. 压电倾斜镜的高压驱动及高速控制[J]. 光学精密工程, 2015,23(10): 2803-2809
FAN Mu-wen, HUANG Lin-hai, LI Mei etc. High-voltage drive and control for piezoelectric fast steering mirror[J]. Editorial Office of Optics and Precision Engineering, 2015,23(10): 2803-2809
凡木文, 黄林海, 李梅等. 压电倾斜镜的高压驱动及高速控制[J]. 光学精密工程, 2015,23(10): 2803-2809 DOI: 10.3788/OPE.20152310.2803.
FAN Mu-wen, HUANG Lin-hai, LI Mei etc. High-voltage drive and control for piezoelectric fast steering mirror[J]. Editorial Office of Optics and Precision Engineering, 2015,23(10): 2803-2809 DOI: 10.3788/OPE.20152310.2803.
由于压电倾斜镜的机械谐振会降低自适应光学伺服控制系统的校正带宽
本文研究了补偿压电倾斜镜谐振特性的方法。根据压电倾斜镜机械谐振频率特性的动态模型和实测数据
提出了利用压电倾斜镜高压驱动器中现有的可编程逻辑门阵列(FPGA)设计多阶双二次型数字滤波器来优化系统的动态频率响应特性。基于多阶双二次型数字滤波器
高压驱动器能实时补偿驱动对象的频率特性
完成压电倾斜镜的正谐振和反谐振的同时补偿。将其与压电倾斜镜作为一体
可实现平坦的幅频特性
从而避免机械谐振
提高伺服控制带宽。实验结果表明:相对于传统的高带宽高压驱动器
提出的具有频率特性补偿功能的高带宽高压驱动器可在同样超调量下使系统误差带宽从56 Hz提高到了80 Hz
并且低频抑制能力也得到提高。实验显示提出的具有频率特性补偿功能的高带宽高压驱动器更适合压电倾斜镜的高速动态应用。
As the mechanic resonance of Piezoelectric Fast Steering Mirror (PFSM) degrades the correction width of an adaptive optics servo loop
this paper explores the method to improve the performance of the fast steering mirror in high-speed applications. On the basis of the dynamic model and measured data of the PFSM
a multi-order two-second digital filter was embedded in the Field Programmable Gate Array (FPGA) of the high-voltage driver. The digital filter could suppress or compensate the resonance point and the anti-resonance point at the same time. As a whole with the PFSM
the optimized frequency response of the high-voltage driver flattens the magnitude response
avoids undesired resonance behavior and improves the control bandwidth. As compared with that of traditional high-voltage drivers
experimental results with the proposed high-voltage driver show that the control bandwidth of the system is effectively improved from 56 Hz to 80 Hz at the same overshot
and also the error rejection at low frequency is enhanced. The high bandwidth high-voltage driver with a plant characteristic compensator is more attractive to drive the PFSM in high-speed applications.
凌宁, 陈东红, 官春林, 等. 两维高速压电倾斜反射镜[J]. 光电工程, 1995, 22(1): 51-60. LING N, CHEN D H, GUAN CH L, et al.. Two-dimension piezoelectric fast steering mirror [J]. Opto-Electronic Engineering, 1995, 22(1): 51-60. (in Chinese)
RAO CH H, ZHANG A, FAN X L, et al.. Adaptive optics system based on deformable secondary mirror on 1.8-meter telescope [J]. SPIE, 2012,8447: 844731-844740.
RAO CH H, JIANG W H, LING N, et al.. Spatial and temporal characterization of phase fluctuations in non-Kolmogorov atmospheric turbulence [J].J. Mod. Opt., 2001, 47(6): 1111-1126.
张小军, 凌宁. 高速压电倾斜镜动态特性分析[J]. 强激光与粒子束, 2003,15(10): 966-968. ZHANG X J, LING N. Dynamic analysis of fast piezo steering mirror [J]. High Power Laser and Particle Beams, 2003, 15(10): 966-968. (in Chinese)
KIM B S, GIBSON S, TSAO T C. Adaptive control of a tilt mirror for laser beam steering[J]. Proc. ACC, 2004, 7803: 3417-3421.
黑沫, 鲁亚飞, 张智永, 等. 基于动力学模型的快速反射镜设计[J]. 光学 精密工程, 2013, 21(1): 53-61. HEI M, LU Y F, ZHANG ZH Y, et al.. Design of fast steering mirror based on dynamic model [J]. Opt. Precision Eng., 2013, 21(1): 53-61. (in Chinese)
周辉, 杨明冬, 贾建军, 等. 压电驱动FSM的动态性能分析[J]. 科学技术与工程, 2013,13(18): 5168-5171. ZHOU H, YANG M D, JIA J J, et al.. Dynamic performance analysis of fast steering mirror actuated by piezoelectric stacks [J]. Science Technology and Engineering, 2013, 13(18): 5168-5171. (in Chinese)
徐向波, 房建成, 李海涛, 等. 控制力矩陀螺框架系统的谐振抑制与精度控制[J]. 光学 精密工程, 2012,20(12): 305-312. XU X B, FANG J CH, LI H T, et al.. Resonance elimination and precision control of CMG gimbal system [J]. Opt. Precision Eng., 2012, 20(12): 305-312. (in Chinese)
KRZYSZTOF S, TERESA O K. Vibration suppression in a two-mass drive system using PI speed controller and additional feedbacks-comparative study [J]. IEEE Transactions on Industrial Electronics, 2007, 54(2): 1193-1206.
杨晓霞, 阴玉梅, 孟浩然, 等. 利用加速度反馈的大型光电设备主轴控制技术[J]. 中国惯性技术学报, 2013, 21(4): 421-424. YANG X X, YIN Y M, MENG H R, et al.. Mount control for large optoelectronic equipment by using acceleration feedback [J]. Journal of Chinese Inertial Technology, 2013, 21(4): 421-424. (in Chinese)
王利, 饶长辉, 饶学军. 压电陶瓷微动台的复合控制[J]. 光学 精密工程, 2012, 20(6): 1265-1271. WANG L, RAO CH H, RAO X J. Feed-forward control of piezoelectric ceramic positioning stage [J]. Opt. Precision Eng., 2012, 20(6): 1265-1271. (in Chinese)
王国富, 余法山, 江旭东, 等. 机载光电转台的谐振分析及自适应滤波器设计[J]. 光学 精密工程, 2007,15(11): 1802-1808. WANG G F, YU F SH, WANG X D, et al.. Analysis on resonance of air-borne opto-electronic tracking turntable and design of adaptive filter [J]. Opt. Precision Eng., 2007, 15(11): 1802-1808. (in Chinese)
杨明, 郝亮, 徐殿国. 基于自适应陷波滤波器的在线机械谐振抑制[J]. 哈尔滨工业大学学报, 2014,46(4):63-69. YANG M, HAO L, XU D G. Online suppression of mechanical resonance based on adapting notch filter [J]. Journal of Harbin Institute of Technology, 2014, 46(4):63-69. (in Chinese)
章家保, 刘慧, 贾宏光, 等. 电动舵机伺服系统的模型辨识及其校正[J]. 光学 精密工程, 2008,16(10):1971-1976. ZHANG J B, LIU H, JIA H G, et al.. Model identification and corrector design for servo system of electromechanical actuator [J]. Opt. Precision Eng., 2008, 16(10):1971-1976. (in Chinese)
TYSON R K. Principle of Adaptive Optics [M]. San Diego: Academic Press INC, 1991.
0
浏览量
676
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构