浏览全部资源
扫码关注微信
广东工业大学 广东省微纳加工技术与装备重点实验室,广东 广州,510006
收稿日期:2015-03-20,
修回日期:2015-04-23,
纸质出版日期:2015-10-25
移动端阅览
赵荣丽, 陈新, 李克天. 双柔性平行六连杆微动平台结构的设计及测试[J]. 光学精密工程, 2015,23(10): 2860-2869
ZHAO Rong-li, CHEN Xin, LI Ke-tian. Design and experiments of micro motion platform based on a pair of flexible parallel six-bar linkages[J]. Editorial Office of Optics and Precision Engineering, 2015,23(10): 2860-2869
赵荣丽, 陈新, 李克天. 双柔性平行六连杆微动平台结构的设计及测试[J]. 光学精密工程, 2015,23(10): 2860-2869 DOI: 10.3788/OPE.20152310.2860.
ZHAO Rong-li, CHEN Xin, LI Ke-tian. Design and experiments of micro motion platform based on a pair of flexible parallel six-bar linkages[J]. Editorial Office of Optics and Precision Engineering, 2015,23(10): 2860-2869 DOI: 10.3788/OPE.20152310.2860.
采用直圆型柔性铰链设计了承载能力较大的双柔性平行六连杆微纳定位平台
并对其性能进行了测试。基于柔性铰链经典刚度公式计算了直圆型柔性铰链转动刚度
推导了双柔性平行六连杆微动平台在运动方向的整体刚度函数;建立了平台的动力学模型
得到了平台的固有频率解析式。基于静动态特性优化设计了双柔性平行六连杆微纳定位平台
得到了平台的优化参数。基于激光干涉仪和多普勒激光测振仪建立了平台的静动态特性测试系统。 对微纳定位平台进行了试验和测试
结果显示:刚度的理论计算值为7.92 N/μm
试验值为7.44 N/μm
误差为6.5%;固有频率的理论模型值为349.9 Hz
实验值为342.2 Hz
误差为2.3%。空载和加载为250、500、2 000、2 250、2 500 g时的平台位移表明加载不均匀会对平台输出位移产生较大的影响
当加载为2 500 g时
不均匀加载对位移的影响量约为均匀加载的5倍。此外
平台最大位移为56.59 μm。重复定位精度测试显示
在施加电压50、100、150 V时
定位平台在同一输入电压下的位移最大偏差为0.896 μm。实验结果表明
建立的双柔性平行六连杆的刚度和固有频率计算模型是正确的
设计的微动平台的最大位移及精度可满足设计要求。
A micro motion platform with a pair of flexible parallel six-bar linkages and larger bearing capacity was designed based on a right circular flexure hinge and its performance was tested. The rotational stiffness of the right circular flexure hinge was calculated by classical stiffness equation
then the stiffness equation of the platform with a pair of flexible parallel six-bar linkages in a motion direction was deduced. The dynamic model of the platform was established with Lagrange equation
and the analytical formula of natural frequency of the platform was deduced. The micro motion platform was designed and optimized and the parameters of the flexure hinge were optimized based on the static and dynamic characteristics. A test system for static and dynamic characteristics of the micro motion platform was established based on a laser interferometer and a laser Doppler vibrometer. The test results show that the error of stiffness is 6.5% between the theoretical value 7.92 N/μm and the experiment value 7.44 N/μm
and the error of nature frequency is 2.3% between the theoretical value 349.9 Hz and the experiment value 342.2 Hz. The displacements under no-load and the loading of 250
500
2 000
2 250
2 500 g indicate that the uneven loading has larger influence on the displacement of the platform. When the loading is 2 500 g
the effect by uniform loading is about five times as much as that of nonuniform loading. The max displacement of the platform is 56.59 μm. Moreover
the repeated accuracy of positioning is tested and the results indicate that the max displacement deviation is 0.896 μm on the voltage of 50
100
150 V. It concludes that the calculation models of the stiffness and natural frequency are correct and the max displacement and accuracy match the design demand.
KYUNG S M, WOO C C, SHIN H S. Static and dynamic analysis of a nano-positioning flexure-hinge stage with a flexible lever mechanism [J]. Engineering Manufacture, 2005, B08504: 447-454.
马力,荣伟斌,孙立宁. 三维纳米级微动台的设计与分析[J]. 光学 精密工程,2006,14(6): 1017-1024. MA L, RONG W B, SUN L N. Design and analysis of a novel 3-DOF nano-positioning stage[J]. Opt. Precision Eng., 2006, 14(6): 1017-1024.(in Chinese)
POLIT S, DONG J Y. Development of a high-band-width XY nano-positioning stage for high-rate micro-nano manufacturing [J]. IEEE/ASME Transactions on Mechatronics, 2011, 16(4):724-733.
LI Y M, XU Q S. A totally decoupled piezo-driven XYZ flexure parallel micro-positioning stage for micro/nano manipulation[J]. IEEE/ASME Transactions on Science and Engineering, 2011, 8(2):265-279.
CHENG L,ZHANG C J,ZHANG G J. High-speed and large-range scanning control of a piezoelectric stack actuated platform[C]. Proceedings of the 8th World Congress on Intelligent Control and Automation. Jinan: Shandong University Press, 2010:5523-5527.(in Chinese)
张彦斐,宫金良. 2自由度大行程微定位平台结构与参数设计[J]. 机械工程学报,2010,46(23): 30-35. ZHANG Y, GONG J L. Structure and parameter design for two degrees of freedom micro-positioning mechanism with lager travel[J].Journal of Mechanical Engineering, 2010,46(23):30-35.(in Chinese)
朱玉龙. 基于双压电驱动宏微结合的纳米定位台研究[D]. 苏州:苏州大学,2013. ZHU Y L. Researching on Coarse-fine Nano-positioning Stage based on Dual Piezoelectric Drive[D]. Suzhou:Suzhou University, 2013.(in Chinese)
马力,谢炜,刘波,等. 柔性铰链微定位平台的设计[J]. 光学 精密工程,2014,22(2): 338-345. Ma L, XIE W, LIU B, et al.. Design of micro-positioning stage with flexure hinge[J]. Opt. Precision Eng., 2014,22(2):338-345.(in Chinese)
林超,俞松松,等. 微/纳米定位平台的动态特性分析与试验[J]. 浙江工业大学学报(工学版),2012,46(8):1375-1381. LIN CH, YU S S, et al.. Dynamic analysis and testing of micro/nano-positioning platform[J]. Journal of Zhejiang University(Engineering Science), 2012, 46(8):1375-1381.(in Chinese)
俞松松. 多尺度微/纳米定位系统的设计/分析及试验研究[D]. 重庆:重庆大学,2011. YU S S. Design, Analysis and Testing of a Multi-scale Micro/nano-positioning System[D]. Chongqing:Chongqing University, 2011.(in Chinese)
裴旭,李远玥,侯振兴. 大行程转动柔性铰链性能测试及实验[J]. 光学 精密工程,2013,21(4): 928-933. PEI X, LI Y Y, HOU ZH X. Performance measurement and experiment for rotational flexural joint with large-stroke [J]. Opt. Precision Eng., 2013, 21(4): 928-933.(in Chinese)
周京博,孙涛,侯国安. 双柔性支撑板快速伺服刀架优化设计与测试[J]. 光学 精密工程,2013,21(2): 349-355. ZHOU J B, SUN T, HOU G A. Optimal design and test of double elastic plate based fast tool servo[J]. Opt. Precision Eng., 2013, 21(2): 349-355.(in Chinese)
吴鹰飞,周兆英. 柔性铰链的设计计算[J]. 工程力学,2002,19(6): 136-140. WU Y F, ZHOU ZH Y. Design of flexure hinges[J]. Engineering Mechanics, 2002, 19(6):136-140.(in Chinese)
吴鹰飞,周兆英. 柔性铰链转动刚度计算公式的推导[J]. 仪器仪表学报,2004, 25(1): 125-128,137. WU Y F, ZHOU ZH Y. Deduction of design equation of flexure hinge [J]. Chinese Journal of Scientific Instrument,2004, 25(1): 125-128,137.(in Chinese)
HER I. Methodology for compliant mechanism Design [D]. Purdue University, 1986.
GUI M CH, JIAN Y J,ZHI W L. Right-circular Corner-filleted Flexure Hinges[C]. Proceedings of the 2005 IEEE International conference on Automation Science and Engineering Edmonton, Canada, August 1 & 2, 2005:249-253.
PAROS J M, WEISBORO L. How to design flexure hinges[J].Machine Design, 1965, 37(27):151-157.
朱梦非,梁平. 基于LabVIEW的激光多普勒测速系统研究[J]. 国外电子测量技术, 2011,30(5): 48-54. ZHU M F, LIANG P. Research on laser doppler vibrometer based on LabVIEW [J]. Foreign Electronic Measurement Technology, 2011, 30(5):48-54. (in Chinese)
0
浏览量
273
下载量
5
CSCD
关联资源
相关文章
相关作者
相关机构