浏览全部资源
扫码关注微信
1. 河南师范大学 计算机与信息工程学院,河南 新乡,453007
2. 河南省高校计算智能与数据挖掘工程技术研究中心,河南 新乡,453007
收稿日期:2015-05-19,
修回日期:2015-07-17,
纸质出版日期:2015-10-25
移动端阅览
张新明, 尹欣欣, 涂强. 动态迁移和椒盐变异融合生物地理学优化算法的高维多阈值分割[J]. 光学精密工程, 2015,23(10): 2943-2951
ZHANG Xin-ming, YIN Xin-xin, TU Qiang. High-dimensional multilevel thresholding based on BBO with dynamic migration and salt & pepper mutation[J]. Editorial Office of Optics and Precision Engineering, 2015,23(10): 2943-2951
张新明, 尹欣欣, 涂强. 动态迁移和椒盐变异融合生物地理学优化算法的高维多阈值分割[J]. 光学精密工程, 2015,23(10): 2943-2951 DOI: 10.3788/OPE.20152310.2943.
ZHANG Xin-ming, YIN Xin-xin, TU Qiang. High-dimensional multilevel thresholding based on BBO with dynamic migration and salt & pepper mutation[J]. Editorial Office of Optics and Precision Engineering, 2015,23(10): 2943-2951 DOI: 10.3788/OPE.20152310.2943.
针对高维多阈值图像分割中存在的多阈值搜索问题
提出了一种动态迁移和椒盐变异融合的生物地理学优化算法(BBOD)。首先
构建了一种基于动态扰动的迁移算子
对候选解中没有发生迁移操作的特征值添加一个动态的扰动因子
使种群的多样性增加
从而提高全局搜索能力;然后
创建了新型的变异算子
对待变异的特征值产生一个椒盐扰动
使该值在小范围内浮动
以便提高局部搜索能力和算法的收敛速度;最后
将该算法应用到基于最小交叉熵的图像高维多阈值分割中。高维多阈值分割实验结果表明
本文提出的BBOD算法能够获得最优的阈值向量
运行速度、性能指标均优于标准的生物地理学优化(BBO)算法
基于变异的生物地理学优化(BBOM)算法、FFA(Firefly Algorithm)和CSA (Cuckoo Search Algorithm)
运行速度是FFA的5倍以上。该算法更适用于基于最小交叉熵的高维多阈值优化选择。
In view of the threshold search difficulty in high-dimensional multilevel thresholding segmentation
a Biogeography-Based Optimization with Dynamic migration and salt & pepper mutation (BBOD) was proposed. Firstly
a dynamic migration operator was created
and it could add a dynamic disturbance factor to the feature values without migration occured in candidate solutions to increase the diversity of a population. Then
a new type of mutation operator was built to produce a salt and pepper disturbance for the feature values to be mutated
by which the local searching ability and convergence process of the algorithm were accelerated. Finally
the proposed BBOD algorithm was applied to the high-dimensional multilevel image thresholding segmentation based on minimum cross entropy. Experimental results show that BBOD is better in optimization performance and faster in operation speeds than standard BBO (Biogeography-Based Optimization)
BBOM(Biogeography-Based Optimization with Mutation)
FFA(Firefly Algorithm)and CSA (Cuckoo Search Algorithm)
and its operation speed is 5 times as fast as that of FFA. The BBOD is fit to the threshold selection in the high-dimensional multilevel thresholding segmentation based on minimum cross entropy.
何志勇, 孙立宁,黄伟国,等. 基于Otsu准则和直线截距直方图的阈值分割[J]. 光学 精密工程,2012,20(10): 2315-2323. HE ZH Y, SUN L N, HUANG W G, et al.. Thresholding segmentation algorithm based on Otsu criterion and line intercept histogram [J]. Opt. Precision Eng., 2012,20(10): 2315-2323. (in Chinese)
王冬冬, 张炜, 金国锋, 等. 尖点突变理论在红外热波检测图像分割中的应用[J]. 红外与激光工程, 2014, 43(3): 1009-1015. WANG D D, ZHANG W, JIN G F, et al.. Application of cusp catastrophic theory in image segmentation of infrared thermal waving inspection [J]. Infrared and Laser Engineering, 2014, 43(3): 1009-1015. (in Chinese)
李晓峰, 徐军, 罗积军, 等. 基于Contourlet域HMT-3S模型的激光主动成像图像分割[J]. 红外与激光工程, 2012, 41(2): 531-536. LI X F, XU J, LUO J J, et al.. Laser active image segmentation based on Contourlet-domain hidden Markov trees-3S model [J]. Infrared and Laser Engineering, 2012, 41(2): 531-536. (in Chinese)
CHEN X W, KAR S, RALESCU D A. Cross-entropy measure of uncertain variables[J]. Information Sciences, 2012, 201:53-60.
张新明, 孙印杰, 张慧云. 最大熵和最小交叉熵综合的交互式图像分割[J]. 计算机工程与应用, 2010, 46(30): 191-194. ZHANG X M, SUN Y J, ZHANG H Y. Interactive image segmentation based on combining maximum entropy and minimum cross entropy [J]. Computer Engineering and Applications, 2010, 46(30):191-194. (in Chinese)
HORNG M H, LIOU R J. Multilevel minimum cross entropy threshold selection based on the firefly algorithm [J]. Expert Systems with Application, 2011, 38(12):14805-14811.
陈恺, 陈芳, 戴敏, 等. 基于萤火虫算法的二维多阈值快速图像分割[J]. 光学 精密工程, 2014, 22(2): 517-523. CHEN K, CHEN F, DAI M, et al.. Fast image segmentation with multilevel threshold of two-dimensional entropy based on firefly algorithm [J]. Opt. Precision Eng., 2014, 22(2): 517-523. (in Chinese)
BHANDARI A K, SINGH V K, KUMAR A, et al.. Cuckoo search algorithm and wind driven optimization based study of satellite image segmentation for multilevel thresholding using Kapur's entropy [J]. Expert Systems with Application, 2014, 41(7): 3538-3560.
SIMON D. Biogeography-based optimization [J]. IEEE Transaction on Evolutionary Computation, 2008,12(6):702-713.
YANG G Q, LIU Y K, YANG K. Multi-objective biogeography-based optimization for supply chain network design under uncertainty[J]. Computers and Industrial Engineering, 2015, 85:145-156.
TAMJIDY M, PASLAR S, BAHARUDIN B T, et al.. Biogeography based optimization (BBO) algorithm to minimize non-productive time during hole-making process[J]. International Journal of Production Research, 2015, 53(6): 1880-1894.
KIM S S, BYEON J H, YU H, et al.. Biogeography-based optimization for optimal job scheduling in cloud computing [J]. Applied Mathematics and Computation, 2014, 247:266-280.
NIU Q, ZHANG L T, LI K.A biogeography-based optimization algorithm with mutation strategies for model parameter estimation of solar and fuel cells[J]. Energy Conversion and Management, 2014, 86: 1173-1185.
GUO W A, WANG L, WU Q D. An analysis of the migration rates for biogeography-based optimization[J]. Information Sciences, 2014, 254:111-140.
毕晓君, 王珏, 李博, 等. 基于动态迁移的ε约束生物地理学优化算法[J]. 计算机研究与发展, 2014, 51(3): 580-589. BI X J, WANG J, LI B, et al.. An ε constrained biogeography-based optimization with dynamic migration[J]. Journal of Computer Research and Development, 2014, 51(3): 580-589. (in Chinese)
MA H P, SIMON D, FEI M R, et al.. Variations of biogeography-based optimization and Markov analysis [J]. Information Sciences, 2013, 220:492-506.
MA H P. An analysis of the equilibrium of migration models for biogeography-based optimization[J]. Information Sciences, 2010, 180(18):3444-3464.
0
浏览量
437
下载量
7
CSCD
关联资源
相关文章
相关作者
相关机构