浏览全部资源
扫码关注微信
华南理工大学 机械与汽车工程学院,广东 广州,510640
收稿日期:2015-06-10,
修回日期:2015-08-02,
纸质出版日期:2015-10-25
移动端阅览
叶峰, 王敏, 陈剑东等. 共面点的摄像机非线性畸变校正[J]. 光学精密工程, 2015,23(10): 2962-2970
YE Feng, WANG Min, CHEN Jian-dong etc. Camera nonlinear distortion correction based on coplanar points[J]. Editorial Office of Optics and Precision Engineering, 2015,23(10): 2962-2970
叶峰, 王敏, 陈剑东等. 共面点的摄像机非线性畸变校正[J]. 光学精密工程, 2015,23(10): 2962-2970 DOI: 10.3788/OPE.20152310.2962.
YE Feng, WANG Min, CHEN Jian-dong etc. Camera nonlinear distortion correction based on coplanar points[J]. Editorial Office of Optics and Precision Engineering, 2015,23(10): 2962-2970 DOI: 10.3788/OPE.20152310.2962.
采用传统的Tsai两步法进行摄像机标定时
标定精度会受一阶径向畸变模型的限制。本文提出了一种同时考虑摄像机镜头径向畸变和切向畸变的摄像机模型并研究了模型求解方法来提高畸变校正精度。考虑图像中心区域畸变较小
故用中心附近点列出线性方程组计算了摄像机的部分参数;建立了综合畸变模型
将摄像机参数代入模型计算畸变参数的初始值。由于焦距和平移分量在标定板与相机平面的距离深度变化不够时难以一次性准确标定
故将其代入综合畸变模型重新计算
并运用两步迭代法逐步逼近精确解。最后
对世界坐标系进行空间几何变换、透视变换和成像变换得到的重投影图像的像素坐标并与实际测得的像素坐标值进行比较
得到校正误差。结果表明
本文的畸变校正方法平均像素误差可以达到0.114 9 pixel
优于Tsai校正方法的0.367 0 pixel
且重复性较好。
When traditional Tsai two-stage technique is used to calibrate a camera
its calibration accuracy will be limited by first-order radial distortion model. Therefore
a camera imaging model considering both radial distortion and tangential distortion is proposed
and a new method to solve the model is presented to improve the distortion correction accuracy. As the center of an image has a smaller distortion
the image center points are used to give a linear equation group and to calculate a part of parameters of the camera. Then camera parameters are taken into comprehensive distortion model to derive the initial values of distortion coefficients. As focal length and matrix's translation value can not be calculated directly when the calibration board's depth variation is small
the values have to be retaken to model and to be calculated.Then the converged solution is approached by two-stage iterative computation. Finally
the world coordinate system is converted by space geometric transform
perspective transform and imaging transform to obtain the pixel coordinate of the reprojective image. The calibration error is obtained by calculating the mean difference between re-projection pixel coordinates and actual measured pixel coordinates of each point. Experimental result indicates that the calibration method can offer the accuracy of 0.1149 pixel
which is better than Tsai's 0.3670 pixel with well repeatability.
TSAI R Y. A versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the-shelf TV cameras and lenses [J]. IEEE Journal of Robotics Automation, 1987,3(4):323-344.
MARTINS H A, BIRK J R, KELLEY R B. Camera models based on data from two calibration planes[J]. Computer Graphics and Imaging Processing,1981,17:173-180.
ZHANG G J,HE J J,YANG X M. Calibrating camera radial distortion with cross-ratio invariability[J]. Optics& Laser Technology, 2003,35(6):457-461.
徐杰. 机器视觉中摄像机标定Tsai两步法的分析与改进[J]. 计算机工程与科学,2010,32(4):45-48,58. XU J. Analyzing and improving the Tsai camera calibration method in machine vision[J].Computer Engineering & Science,2010,32(4):45-48,58.(in Chinese)
苏成志,王恩国,郝江涛,等. 平面几何测量中的图像畸变校正[J]. 光学 精密工程,2011,19(1):161-167. SU CH ZH, WANG E G, HAO J T, et al.. Distortion correction for images in planar metrology[J]. Opt. Precision Eng.,2011,19(1):161-167.(in Chinese)
胡浩,梁晋,唐正宗,等. 显微立体视觉小尺度测量系统的标定[J]. 光学 精密工程,2014,22(8):1985-1994. HU H, LIANG J, TANG ZH Z, et al.. Calibration of stereo microscope measurement systems[J]. Opt. Precision Eng., 2014,22(8):1985-1994. (in Chinese)
兰海滨,王平,龙腾. 图像拼接中相机镜头非线性畸变的校正[J]. 光学 精密工程,2009,17(5):1196-1202. LAN H B, WANG P, LONG T. Nonlinear aberration correction of lens in image mosaic[J]. Opt. Precision Eng.,2009,17(5):1196-1202.(in Chinese)
张征宇,黄诗捷,罗川,等. 基于共面条件的摄像机非线性畸变自校正[J]. 光学学报,2012,32(1):0115002-6. ZHANG ZH Y, HUANG SH J, LUO CH, et al.. Nonlinear distortion correction of camera based on coplanar condition equations[J]. Acta Optica Sinica,2012,32(1):0115002-6. (in Chinese)
王飞,戢运峰,冯刚,等. 红外焦平面阵列非线性校正曲线测量方法[J]. 中国光学,2014,7(1):144-149. WANG F, JI Y F, FENG G, et al.. Method for measuring nonlinear calibrated curve of infrared focal plane arrays[J]. Chinese Optics, 2014,7(1):144-149. (in Chinese)
朱伟东,曹良洪,梅标,等. 利用圆心不对称投影精确标定工业相机[J]. 光学 精密工程,2014,22(8):2267-2273. ZHU W D, CAO L H, MEI B, et al.. Calibration of industrial cameras using asymmetric circle center projection [J]. Opt. Precision Eng.,2014,22(8):2267-2273. (in Chinese)
解则晓,韩振华,高翔. 光笔式单目视觉测量系统的关键技术[J]. 中国光学,2013,6(5):780-787. XIE Z X, HAN ZH H, GAO X. Key technologies of monocular vision measurement system with light pen[J]. Chinese Optics,2013,6(5): 780-787. (in Chinese)
杨必武,郭晓松. 摄像机镜头非线性畸变校正方法综述[J]. 中国图象图形学报,2005,10(3):269-274. YANG B W, GUO X S. Overview of nonlinear distortion correction of camera lens[J]. Journal of Image and Graphics,2005,10(3):269-274. (in Chinese)
黄湛. 高精度图像尺寸检测镜头畸变校正方法与实现[D]. 广东:广东工业大学,2013. HUANG ZH. The method and Realization of lens distortion correction for high-precision image size measurement [D].Guangzhou:Guangdong University of Technology,2013. (in Chinese)
张佳成,范勇,陈念年. 基于混合模型的CCD镜头畸变精校正算法[J]. 计算机工程,2010,36(1):191-193. ZHANG J CH,FAN Y,CHEN N N. High precision correction algorithm for CCD lens distortion based on combined model[J].Computer Engineering,2010,36(1):191-193.(in Chinese)
樊巧云,李小娟,张广军. 星敏感器镜头畸变模型选择[J]. 红外与激光工程,2012,41(3):665-670. FAN Q Y, LI X J, ZHANG G J. Selection of star sensor lens aberration model[J].Infrared and Laser Engineering,2012,41(3):665-670.(in Chinese)
马颂德. 计算机视觉:计算理论与算法基础[M]. 北京:科学出版社,1998. MA S D. Computer Vision: Theory and Algorithms[M].Beijing:Science Press,1998. (in Chinese)
HARTLEY R I. In defence of the 8-point algorithm[C]. Proceedings of the Fifth IEEE International Conference on Computer Vision, Cambridge, P.R. USA: MIT, 1995:1064-1070.
0
浏览量
330
下载量
11
CSCD
关联资源
相关文章
相关作者
相关机构