浏览全部资源
扫码关注微信
西北工业大学 电子信息学院,陕西 西安,710072
收稿日期:2015-07-06,
修回日期:2015-08-24,
纸质出版日期:2015-10-25
移动端阅览
翟海天, 李辉, 李彬. 基于区域划分的红外超分辨率重建[J]. 光学精密工程, 2015,23(10): 2989-2996
ZHAI Hai-tian, LI Hui, LI Bin. Infrared super resolution reconstruction based on region division[J]. Editorial Office of Optics and Precision Engineering, 2015,23(10): 2989-2996
翟海天, 李辉, 李彬. 基于区域划分的红外超分辨率重建[J]. 光学精密工程, 2015,23(10): 2989-2996 DOI: 10.3788/OPE.20152310.2989.
ZHAI Hai-tian, LI Hui, LI Bin. Infrared super resolution reconstruction based on region division[J]. Editorial Office of Optics and Precision Engineering, 2015,23(10): 2989-2996 DOI: 10.3788/OPE.20152310.2989.
提出了红外超分辨率重建系统以获取高分辨率红外数据。首先
根据红外图像获取过程建立了数学模型
讨论了降采样、模糊、运动以及高斯噪声对红外系统的影响;在非退化特征提取的基础上提出了基于特征的亚像素配准算法
其根据所得到的非退化特征应用归一化均方根误差来估计两帧之间的亚像素位移。然后
分析了传统全变分因子在高分辨重建时的不足并对其进行改进;利用区域划分将图像划分为平滑区域和细节区域
并根据区域的不同情况自适应全变分因子
从而使细节区域不至于过平滑。最后
利用MM(Majorization Minimixation)算法对合成的低分辨率红外图像和真实红外图像进行了超锐度重建。 与同类相关算法的比较实验显示:所提算法亚像素配准最大误差为0.09 pixel
重建后的红外图像质量优于其他同类算法。所提算法可以对低分辨红外图像序列进行有效重建
具有配准精度高、重建图像细节丰富等特点
可应用于各种红外成像系统。
An infrared super resolution reconstruction system was proposed to acquire high resolution infrared images. A mathematical model was established according to the procedure of image acquisition. The effect of down-sampling
blurring
motion
and Gussian noise on the infrared system were discussed. Then
a non-degradation feature based sub-pixel motion estimation method was proposed. On the basis of obtained non-degradation
the normalized root of mean square was utilized to estimate the sub-pixel motion between two frames. Furthermore
drawbacks of the conventional total variation factor were analyzed and improved when it was applied in the reconstruction procedure. The region division method was used to divide the image into smooth regions and detail regions
then the new variational factor was able to adaptive to different regions according to their characteristics
and the detail regions could not be over-smoothed. Finally
the experiments on both synthetic and real infrared image sequences were performed by MM(Majorization Minimization). The results indicate that the maximum error of proposed algorithm is 0.09 pixel and the quality of the reconstructed image is better than those of the other algorithms. The proposed algorithm has higher sub-pixel registration accuracy and rich image details
and is able to reconstruct the sequence of low resolution infrared images efficiently.It is suitable for various infrared applications.
LIU H C, LI S T, YIN H T. Infrared surveillance image super resolution via group sparse representation [J]. Optics Communications, 2013, 289:45-52.
LAHIRI B B, BAGAVATHIAPPAN S, JAYAKUMAR T, et al.. Medical applications of infrared thermography: A review [J]. Infrared Physics and Technology, 2012, 55(4):221-235.
李志军,王卫华,牛照东,等. 城区红外遥感云层检测技术[J]. 中国激光,2012,39(11):121-126. LI ZH J, WANG W H, NIU ZH D, et al.. Cloud recognition from infrared remote sensing images under city background[J]. Chinese Journal of Lasers, 2012, 39(11):121-126. (in Chinese)
WANG P, SUN J Y, LI L L, et al.. Image quality modeling in forward-looking infrared building detection[J]. Advances in Information Sciences and Service Sciences, 2012, 4(23):757-764.
刁伟鹤,毛峡,常乐. 一种新的红外目标图像质量评价方法[J]. 航空学报,2014,31(10):2026-2033. DIAO W H, MAO X, CHANG L. A new quality estimation method for infrared target images[J]. Acta Aeronautica et Astronautica Sinica, 2014, 31(10):2026-2033. (in Chinese)
邓承志, 田伟, 汪胜前,等. 近似稀疏正则化的红外图像超分辨率重建[J]. 光学 精密工程, 2014, 22(6): 1648-1654. DENG CH ZH, TIAN W, WANG SH Q, et al.. Super-resolution reconstruction of approximate sparsity regularized infrared images[J]. Opt. Precision Eng., 2014, 22(6):1648-1654. (in Chinese)
彭真明, 景亮, 何艳敏,等. 基于多尺度稀疏字典的多聚焦图像超分辨融合[J]. 光学 精密工程, 2014, 22(1): 169-176. PENG ZH M, JING L, HE Y M, et al.. Superresolution fusion of multi-focus image based on multiscale sparse dictionary[J]. Opt. Precision Eng., 2014, 22(1): 169-176. (in Chinese)
贺明,王亚弟,王新赛,等. 场景自适应的红外焦平面成像系统灰度超分辨技术[J]. 红外与激光工程,2014, 43(7):2138-2142. HE M, WANG Y D, WANG X S, et al.. Adaptive scene-based gray super-resolution technology of infrared focal plane imaging system[J]. Infrared and Laser Engineering, 2014, 43(7):2138-2142.(in Chinese)
孙玉宝,韦志辉,肖亮,等. 多形态稀疏性正则化的图像超分辨率算法[J]. 电子学报,2010,38(12):2898-2903. SUN Y B, WEI ZH H, XIAO L, et al.. Multimorphology sparsity regularized image super-resolution [J]. Acta Electronica Sinica, 2010, 38(12):2898-2903. (in Chinese)
HU X Y, PENG S L, HWANG W L. Learning adaptive interpolation kernels for fast single-image super resolution[J]. Signal, Image and Video Processing, 2014, 8(6):1077-1086.
CHEN H H, XUE J L, ZHANG S, et al.. Image super-resolution based on adaptive cosparse regularisation [J]. Electronics Letters, 2014, 50(24):1834-1836.
龚卫国,潘飞宇,李进明. 用双层重建法实现单幅图像的超分辨率重建[J]. 光学 精密工程, 2014, 22(3): 720-729. GONG W G, PAN F Y, LI J M. Single-image super-resolution reconstruction via double layer reconstructing[J]. Opt. Precision Eng., 2014, 22(3): 720-729. (in Chinese)
陈健,高慧斌,王伟国,等. 超分辨率复原方法相关原理研究[J]. 中国光学, 2014, 7(6): 897-910. CHEN J,GAO H B, WANG W G, et al.. Correlation theory of super-resolution restoration method [J]. Chinese Optics, 2014, 7(6): 897-910. (in chinese)
潘宗序,禹晶,肖创柏,等. 基于自适应多字典学习的单幅图像超分辨率算法[J]. 电子学报,2015,43(2):209-216. PAN Z X, YU J, XIAO CH B, et al.. Single image super resolution based on adaptive multi-dictionary learning[J]. Acta Electronica Sinica, 2015, 43(2):209-216. (in Chinese)
ZHANG Y H, DU Y, LING F, et al.. Example-based super-resolution land cover mapping using support vector regression[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(4):1271-1283.
QIN F Q, ZHU L H, CAO L L, et al.. Blind single-image super resolution reconstruction with defocus blur[J]. Sensors and Transducers, 2014, 169(4):77-83.
MAYBOUDI L S, BIRK A M, ZAK G, et al.. Infrared observations and finite element modeling of a laser transmission welding process[J]. Journal of Laser Applications, 2009, 21(3):111-118.
BAI J Q, ZHAO C G, WANG X Y, et al.. Image registration and noise removed for infrared subpixel-shifted images[C]. Proceedings of SPIE-The International Society for Optical Engineering, 2014, 9142.
LV X G, LE J, HUANG J, et al.. A fast high-order total variation minimization method for multiplicative noise removal[J]. Mathematical Problems in Engineering, 2013,Doi:10.1155/2013/834035.
YUAN Q Q, ZHANG L P, SHEN H F. Multiframe super-resolution employing a spatially weighted total variation model [J]. IEEE Transactions on Circuits and Systems for Video Technology, 2012, 22(3):379-392.
XU M X, SUN Q S, HUANG C R, et al.. Super-resolution imaging based on generalized total variation regularization[J]. Sensor Letters, 2014, 12(2):345-351.
杨名宇,李刚. 利用区域信息的航拍图像分割[J]. 中国光学,2014,7(5): 779-785. YANG M Y, LI G. Aerial image segmentation with region information[J]. Chinese Optics, 2014, 7(5): 779-785. (in Chinese)
0
浏览量
972
下载量
3
CSCD
关联资源
相关文章
相关作者
相关机构