浏览全部资源
扫码关注微信
中国科学院 长春光学精密机械与物理研究所 应用光学国家重点实验室,吉林 长春,130033
收稿日期:2015-02-06,
修回日期:2015-03-24,
纸质出版日期:2015-11-25
移动端阅览
张巍, 于新峰, 周连生等. 精密光学系统的热像差[J]. 光学精密工程, 2015,23(11): 3033-3040
ZHANG Wei, YU Xin-feng, ZHOU Lian-sheng etc. Thermal aberration in precision optical system[J]. Editorial Office of Optics and Precision Engineering, 2015,23(11): 3033-3040
张巍, 于新峰, 周连生等. 精密光学系统的热像差[J]. 光学精密工程, 2015,23(11): 3033-3040 DOI: 10.3788/OPE.20152311.3033.
ZHANG Wei, YU Xin-feng, ZHOU Lian-sheng etc. Thermal aberration in precision optical system[J]. Editorial Office of Optics and Precision Engineering, 2015,23(11): 3033-3040 DOI: 10.3788/OPE.20152311.3033.
为了精确控制与补偿物镜的热像差
设计了一套三镜实验光学系统
基于该系统验证了热像差计算方法的准确性。介绍了热像差分析方法及验证实验方案。开展不同热载工况下热像差测试实验
并与仿真结果进行了对比。最后
综合实验与仿真结果
分析了特定热载条件下系统热像差中非轴对称像差成分以及系统最佳焦面的变化趋势
获得了热像差的瞬态特性。实验结果显示:在输入热载大小之比为1:4:9的情况下
实验和仿真获得的热像差均方根(RMS)值之比分别为1:3.75:9和1:4.01:9.01
光学系统所加热载和热像差之间呈线性关系;在实验热载荷作用下
系统最佳焦面的稳态时间小于450 min
而热像差中一阶像散(标准Zernike
Z
4
)的稳态时间小于48 min
一阶四叶(标准Zernike
Z
11
)的稳态时间小于9 min
最佳焦面稳态时间远大于非轴对称成分的稳态时间。基于该三镜实验光学系统所获得的热像差特性能够为投影光刻物镜或其它精密光学系统的热像差控制与补偿提供有力支撑。
To control and compensate the thermal aberration of objective lens accurately
a special three lens integrated experiment optical system was designed
and the calculation method for the thermal aberration was verified based on the designed system. Firstly
thermal aberration simulation method and corresponding verified experiment were introduced. Then
a series of experiments were carried out in different thermal load conditions and comparison of experimental and simulated results were also presented. Finally
combining experimental and simulated results
asymmetric aberrations and focus drift trends of the optical system under a certain thermal load were analyzed
and transient properties of thermal aberration were obtained. The results show that the ratios of RMS(Root Mean Square) values of thermal aberration from the experiments and simulations are 1:3.75:9.00 and 1:4.01:9.01 when the thermal load ratio of the optical system is 1:4:9. The data suggests that the thermal aberration is proportional to a heat load it suffers. For transient thermal aberration
simulation results show that stable time of the best focus position is less than 450 min whereas the stable time of
Z
4
and
Z
11
are 48 min and 9 min respectively. The stable time of best focus is much longer than that of asymmetrical aberration. Thermal aberration properties obtained through the three lens integrated optical system provide references for thermal aberration reduction and calibration strategies both for lithography objective lenses and other similar optical systems.
UEHARA Y, MATSUYAMA T, NAKASHIMA T, et al.. Thermal aberration control for low k1 lithography[J]. SPIE, 2007, 6520:65205V1-65205V11.
NAKASHIMA T, OHMURA Y, OGATA T, et al.. Thermal aberration control in projection lens[J]. SPIE, 2008, 6924:69241V1-69241V9.
LIU P, SNADJR M, ZHANG X, et al.. A computational method for optical application specific lens control in microlithography[J].SPIE, 2010, 7640:76400M1-76400M9.
FUKUHARA K, MIMOTOGI A, KONO T, et al.. Solutions with precise prediction for thermal aberration error in low k1 immersion lithography[J]. SPIE, 2013, 8683:86830U1-86830U7.
BEKAERT J, ANLOOK L, VANDENBERGHE G, et al.. Characterization and control of dynamic lens heating effects under high volume manufacturing conditions[J]. SPIE, 2011, 7973:79730V1-79730V11.
OHMURA Y, OGATA T, HIRAYAMA T, et al.. An aberration control of projection optics for multi-patterning lithography[J]. SPIE, 2011, 7973:79730W1-79730W11.
MULKENS J, KLERK J, LEENDERS M, et al.. Latest developments on immersion exposure systems[J]. SPIE, 2008, 6924:69241P1-69241P12.
STAALS F, ANDRYZHYIEUSKAYA A, BAKKER H, et al.. Advanced wavefront engineering for improved imaging and overlay applications on a 1.35 NA immersion scanner[J]. SPIE, 2011, 7973:79731G1-79731G13.
YOSHIHARA T, SUKEGAWA T, YABU N, et al.. Advanced aberration control in projection optics for double pattering[J]. Optical Microlithography XXII, SPIE, 2009,7274:72741L1-72741L9.
CHEN H, YANG H J, YU X F, et al.. Simulated and experimental study of laser-beam induced thermal aberrations in precision optical systems[J]. Applied Optics, 2013, 52(18):4370-4376.
DOYLE K, GENBERG V, MICHELS G. Integrated Optomechanical Analysis[M]. Washington:SPIE Press, 2002.
YU X F, NI M Y, ZHANG W, et al.. Analysis and experiments of the thermal-optical performance for a kinematically mounted lens element[J]. Applied Optics, 2014, 53(18):4370-4376.
0
浏览量
710
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构