浏览全部资源
扫码关注微信
1. 中国科学院大学 北京,中国,100049
2. 中国科学院 上海技术物理研究所 上海,200083
3. 中国科学院红外探测与成像技术重点实验室, 上海 2000083
收稿日期:2015-03-07,
修回日期:2015-04-15,
纸质出版日期:2015-11-25
移动端阅览
魏传新, 陈洪达, 尹达一. 基于交叉簧片柔性铰链的空间微位移机构[J]. 光学精密工程, 2015,23(11): 3168-3175
WEI Chuan-xin, CHEN Hong-da, YIN Da-yi. Spatial compliant micro-displacement magnifying mechanism based on cross-spring flexural pivot[J]. Editorial Office of Optics and Precision Engineering, 2015,23(11): 3168-3175
魏传新, 陈洪达, 尹达一. 基于交叉簧片柔性铰链的空间微位移机构[J]. 光学精密工程, 2015,23(11): 3168-3175 DOI: 10.3788/OPE.20152311.3168.
WEI Chuan-xin, CHEN Hong-da, YIN Da-yi. Spatial compliant micro-displacement magnifying mechanism based on cross-spring flexural pivot[J]. Editorial Office of Optics and Precision Engineering, 2015,23(11): 3168-3175 DOI: 10.3788/OPE.20152311.3168.
基于交叉簧片柔性铰链(简称'交叉铰链')设计了一种用于光束跟踪、精密指向和瞄准的同轴八铰微位移放大机构。该机构使用菱形构型
用交叉铰链作集中柔性元件
节点处交叉铰链两两同轴配合使用
以便保证运动的平稳输出。研究了机构的运动学以及力学性能
计算了微位移机构的行程放大比和灵敏度;根据交叉铰链的刚度模型
推导出微位移机构的理论刚度;最后
应用有限元软件对机构进行建模并对运动学、静力学以及动力学性能进行仿真。完成了样机的加工和测试
测试结果显示
机构放大比为1.905
理论与测试误差低于2.2%
结构刚度为18.21 N/mm
误差低于0.32%
一阶频率为8.8 Hz
误差低于5%。分析结果验证了本设计的可行性和有效性。该机构适用于空间高精度微位移领域。
A new diamond micro-displacement magnifying mechanism using eight cross-spring flexural pivots was presented for light beam acquisition
tracking and pointing in space optical communication. The piezoelectric ceramic was taken as the actuator
and the cross-spring flexural pivots as the centralized flexural elements. Every two pivots were set in one axis
and the coaxial set of two pivots on each corner of the diamond configure could reduce the axis draft and improve the rigidity and stability of the mechanism. Through analyzing the operation principle
the magnifying ratio and the sensitivity of the mechanism were derived. According to the stiffness model of the cross pivots
the theoretical stiffness of the displacement mechanism was deduced. Finally the displacement mechanism was modeled by finite element method and its kinematics
statics and dynamics were simulated. A prototype was established and tested. Some characteristic parameters were derived
such as the structure stiffness and the eigen frequency of the mechanism. The test results show that the magnifying ratio is 1.905 with the error of 2.2%
the stiffness is 18.21 N/mm with the error of 0.2% and the eigen frequencies is 8.8 Hz with the error of 5%. The experimental data verify the feasibility and effectiveness of proposed design and show that the mechanism is suitable for high precise spatial micro-displacement fields.
裴旭,李远玥,侯振兴. 大行程转动柔性铰链性能测试机实验[J]. 光学 精密工程,2013, 21(4):927-933. PEI X, LI Y Y, HOU ZH X. Performance measurement and experiment for rotational flexural joint with large-stroke[J].Opt. Precision Eng., 2013, 21(4):927-933(in Chinese)
HARINGX J A. The cross-spring pivot as a constructional element[J]. Applied Scientific Research, 1949, 1(1):313-332.
JENSEN B D,HOWELL L L. The modeling of cross-axis flexural pivots[J]. Mechanism and Machine Theory, 2002, 37(5):461-476.
ZELENIKA S, DE B F. Analytical and experimental characterization of high-precision flexural pivots subjected to lateral loads[J]. Precision Engineering, 2002, 26(4):381-388.
ZHAO H ZH, BI SH SH. Stiffness and stress characteristics of the generalized cross-spring pivot[J]. Mechanism and Machine Theory, 2010, 45(10):378-391.
张爱梅,陈贵敏,贾建援. 基于完备椭圆积分解的交叉簧片式柔性铰链大挠度建模[J]. 机械工程学报,2014, 50(11):80-85. ZHANG A M, CHEN G M, JIA J Y. Large deflection modeling of cross-spring pivots based on comprehensive elliptic integral solution[J]. Journal of Mechanical Engineering. 2014, 50(11):80-85.(in Chinese)
刘承平,赵宏哲,毕树生,等. 一种用于机载设备的高精度转动型柔性铰链[J]. 航空学报,2013, 34(3):694-702. LIU CH P, ZHAO H ZH, BI SH SH, et al.. A precise rotational flexure pivot for airborne equipment[J].Acta Aeronautica et Astronautica, 2013, 34(3):694-702.(in Chinese)
刘浪,毕树生,杨春卫,等. 交叉簧片柔性铰链的翘曲分析与消除[J]. 北京理工大学学报, 2014, 34(9):886-891. LIU L, BI SH SH, YANG CH W, et al.. Analysis and elimination of the cross-spring flexural pivot's warpage[J]. Transactions of Beijing Institute of Technology, 2014, 34(9):886-891.(in Chinese)
李琳,杨勇. 空间曲线切口式柔性铰链的设计[J]. 光学 精密工程,2010,18(10):2192-2198. LI L, YANG Y. Design of flexural hinges with space curve notches[J].Opt. Precision Eng., 2010,18(10):2192-2198.(in Chinese)
刘庆玲. 柔度对称微位移放大机构的分析与仿真[J]. 工程力学,2011, 28(6), 231-235. LIU Q L. Analysis and simulation of the compliant symmetrical micro-displacement amplification mechanism[J]. Engineering mechanics, 2011, 28(6),231-235,(in Chinese)
AWTAR S, SLOCUM A H, SEVINCER E. Characteristics of beam-based flexure modules[J]. Journal of Mechanical Design, 2007,129(6):625-639.
TROEGER H. Method of Making a Flexural Pivot[P]. U S:3807029. 1972.
0
浏览量
982
下载量
4
CSCD
关联资源
相关文章
相关作者
相关机构