浏览全部资源
扫码关注微信
1. 中国计量科学研究院 北京,100013
2. 北京工业大学 机械工程与应用电子技术学院 北京,100124
收稿日期:2015-04-14,
修回日期:2015-06-10,
纸质出版日期:2015-11-25
移动端阅览
林虎, 石照耀, 薛梓等. 基于正交距离回归齿面的齿轮误差评定[J]. 光学精密工程, 2015,23(11): 3192-3199
LIN Hu, SHI Zhao-yao, XUE Zi etc. Evaluation of gear errors based on orthogonal distance regression gear profile[J]. Editorial Office of Optics and Precision Engineering, 2015,23(11): 3192-3199
林虎, 石照耀, 薛梓等. 基于正交距离回归齿面的齿轮误差评定[J]. 光学精密工程, 2015,23(11): 3192-3199 DOI: 10.3788/OPE.20152311.3192.
LIN Hu, SHI Zhao-yao, XUE Zi etc. Evaluation of gear errors based on orthogonal distance regression gear profile[J]. Editorial Office of Optics and Precision Engineering, 2015,23(11): 3192-3199 DOI: 10.3788/OPE.20152311.3192.
为了通过测量齿面拓扑轮廓来获取特征线误差
提出了一种基于正交距离回归齿面的误差计算方法。对该方法涉及的实际齿面与理论齿面匹配算法、拓扑轮廓误差的计算与分解及齿面特征线误差的评定算法进行了研究。首先
通过坐标测量方法获取的齿面拓扑数据
建立包含回归齿面参数的非线性方程。然后
求解非线性方程得到回归齿面参数的最优近似解
从而得到与实际齿面匹配的理论齿面
拓扑测量点相对理论齿面的正交距离即为齿面拓扑误差。最后
基于齿轮误差多自由度理论
对实际齿面进行局部自由度及全局自由度回归
进一步分解出齿面的齿廓误差和螺旋线误差。以一标准圆柱直齿轮的齿面拓扑测量点数据为例进行了误差计算
结果显示:计算的结果与直接进行特征线测量的结果差值小于0.5
μ
m
表明提出的基于正交距离回归齿面进行齿轮误差评定的方法是有效的
可以应用于坐标类仪器检测齿轮误差。
To obtain the error of gear characterized curves from gear topographic inspection
a method of gear profile orthogonal distance regression was proposed. Some algorithms involved in the method were researched
such as the matching of a real gear profile with a theoretical gear profile
the calculation and decomposition of topographic error and the evaluation of profile character line error. Firstly
topographic points were obtained by coordinate measurement
and the nonlinear equation including parameters of theoretic profile was established. Then
the nonlinear equation was solved to get the optimal parameters of the regression gear profile and to obtain the theoretical gear profile matching with the real gear profile. Here
the orthogonal distances from measuring points to the theoretical gear surface were calculated as the topographic errors. Finally
based on the multi-degrees of freedom theory for gear deviation
the gear profile error and the helix error were evaluated by local degree regression and holistic degree regression. The coordinate measuring points on a cylindrical gear were used as an example for error calculation. The results are well consistent with the characterized curves measurement using a coordinate measuring machine
and the difference is within 0.5
μ
m. These results show that the proposed gear profile orthogonal distance regression is reasonable and effective
and it can be applied to the gear inspection using coordinate measuring machines.
GOCH G. Gear metrology[J]. CIRP Annals-Manufacturing Technology, 2003, 52(2):659-695.
石照耀, 费业泰, 谢华锟. 齿轮测量技术100年——回顾与展望[J]. 中国工程科学, 2003, 5(9):13-17. SHI ZH Y, FEI Y T, XIE H K. 100 years of gear measurement technology-review & prospect[J]. Engineering Science, 2003, 5(9):13-17.(in Chinese)
HAERTIG F, LIN H, KNIEL K,et al.. Standard conforming involute gear metrology using an articulated arm coordinate measuring system[J]. Measurement Science & Technology, 2012, 23(10):1-6.
林虎, FRANK H, KARIN K, 等. 基于便携式坐标测量机的大齿轮测量方法[J]. 光学 精密工程,2013,21(7):1763-1770. LIN H, FRANK H, KARIN K, et al..Measurement of large gears by using portable coordinate measuring machines[J]. Opt. Precision Eng., 2013,21(7):1763-1770.(in Chinese)
LOTZE W, HAERTIG F. 3D gear measurement by CMM[C]. Proceedings of Laser Metrology and Machine Performance, Birmingham, UK, 2001:333-344.
GAO C H, CHENG K, WEBB D. Investigation on sampling size optimization in gear tooth surface measurement using a CMM[J]. The International Journal of Advanced Manufacturing Technology, 2004, 24(7):599-606.
PETERS J, GOCH G, GUENTHER A. Helical gear measurement using structured light[C]. Proceedings of the XVI IMEKO World Congress, Wien, 2000:227-230.
YOHAN K, KAZUYUKI S, SONKO O, et al.. Optimized measurement strategy for multiple-orientation technique on coordinate measuring machines[J]. Measurement Science & Technology, 2009,20(10):1-8.
孙殿柱,董学朱. 描述真实齿面数学模型的研究[J]. 农业机械学报, 2000, 31(1):79-81. SUN D ZH, DONG X ZH. Research on the mathematical model describing real gear surface[J].Transactions of the Chinese Society for Agricultural Machinery, 2000, 31(1):79-81.(in Chinese)
BLUNT L, JIANG X, STOUT K J. Developments in 3D surface metrology[J]. Transactions on Engineering Sciences, 1999, 23:255-265.
PFEIFER T, KUROKAWA S, MEYER S. Derivation of parameters of global form deviations for 3-dimensional surfaces in actual manufacturing processes[J]. Measurement, 2001,29(3):179-200.
LEOPOLD J, GUENTHER A. Fast 3-D measurement of gear wheels[C]. Proceedings of the Society of Photo-Optical Instrumentation, 2002, 4900:185-94.
SUNG J A. Orthogonal distance fitting of implicit curves and surfaces[J]. Pattern Analysis and Machine Intelligence, 2002, 24(5):620-638.
ATIEG A, WATSON G A. A class of methods for ftting a curve or surface to data by minimizing the sum of squares of orthogonal distances[J]. Journal of Computational and Applied Mathematics, 2003, 158(2):277-296.
LITVIN F L, FUENT A. Gear Geometry and Applied Theory[M]. Cambridge:Cambridge University Press, 2004:105-120.
ISO1328-1:1995, Cylindrical gears-ISO system of accuracy-Part 1:Definitions and allowable values of deviations relevant to corresponding flanks of gear teeth[S].
VDI/VDE 2607 Computer-aided evaluation of profile and helix measurements on cylindrical gears with involute profile[S].
熊有伦. 精密测量中的数学方法[M]. 北京:中国计量出版, 1989:24-26. XIONG Y L.Mathematical Method of Precision Measuring[M]. Beijing:China Metrology Publishing House, 1989:24-26.(in Chinese)
MADSEN K, NIELSEN H B, TINGLEFF O. Methods for non-linear least squares problems[J]. Informatics and Mathematical Modelling Technical,2004, 17-47.
石照耀,林虎. 齿轮误差多自由度理论[J]. 机械工程学报,2014,50(1):55-60. SHI ZH Y, LIN H. Multi-degrees of freedom theory for gear deviation[J]. Journal of Mechanical Engineering, 2014,50(1):55-60.(in Chinese)
0
浏览量
647
下载量
5
CSCD
关联资源
相关文章
相关作者
相关机构