浏览全部资源
扫码关注微信
南京信息工程大学江苏省气象探测与信息处理重点实验室,江苏 南京,210044
收稿日期:2015-06-26,
修回日期:2015-09-19,
纸质出版日期:2015-11-25
移动端阅览
张闯, 王亚明, 陈苏婷. 基于空间依存的无参考图像质量评价[J]. 光学精密工程, 2015,23(11): 3211-3218
ZHANG Chuang, WANG Ya-ming, CHEN Su-ting. No-reference image quality assessment based on spatial dependency[J]. Editorial Office of Optics and Precision Engineering, 2015,23(11): 3211-3218
张闯, 王亚明, 陈苏婷. 基于空间依存的无参考图像质量评价[J]. 光学精密工程, 2015,23(11): 3211-3218 DOI: 10.3788/OPE.20152311.3211.
ZHANG Chuang, WANG Ya-ming, CHEN Su-ting. No-reference image quality assessment based on spatial dependency[J]. Editorial Office of Optics and Precision Engineering, 2015,23(11): 3211-3218 DOI: 10.3788/OPE.20152311.3211.
为了实时监测图像质量
建立了像素小波系数的二元空间依存关系模型
并利用该模型实现了图像质量的无参考评价。首先
将RGB图像映射到HSV空间;对图像进行小波分解
并建立小波系数的二元空间依存关系模型
即以广义高斯分布来拟合小波系数的二元联合分布。然后
分析二元空间依存关系与图像质量的相关性
建立了无参考图像质量评价指标。最后
对图像质量评价指标进行了测试及对比研究。基于TID2013、LIVE及CSIQ数据库完成了测试
结果表明:基于空间依存的无参考图像质量评价指标可以对图像的失真程度进行准确分级
分级准确率达到96%以上;采用基于空间依存的无参考图像质量评价方法可以实现对图像质量失真度的准确分级。
To monitor the image quality in real-time
a binary spatial dependence model of pixel wavelet coefficients was established
and the model was used to realize the image quality assessment by the no-reference image method. Firstly
the RGB image was mapped into a HSV(Hue
Saturation
Value) space and was processed by wavelet decomposition. A binary space dependent relationship model of wavelet coefficients was established
in which the generalized Gaussian distribution was used to fit the binary joint distribution of wavelet coefficients. Then
the correlation between the binary spatial interdependence relationship and the image quality was analyzed
and the no-reference image quality assesment index was obtained. Finally
the proposed image quality assessment indexes were studied and tested comparatively based on the TID2013
LIVE and CSIQ databases. The results show that the image quality assesment index based on the spatial dependency can be used to classify the image distortion degree accurately
and the classification accuracy rate reaches above 96%. It concludes that proposed no-reference image method based on the spatial dependency achieves accurate image quality classification.
WANG Z, SIMONCELLI E P, BOVIK A C. Multi-scale Structural Similarity for Image Quality Assessment(Invited Paper)[C]. Proceedings of 37th IEEE Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, 2003:1398-1402.
WANG Z, BOVIK A C, SHEIKH H R, et al.. Image quality assessment:from error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004, 13(4):600-612.
CHEN M J, BOVIK A C. Fast structural similarity index algorithm[J].Journal of Real-Time Image Processing, 2011, 6(4):281-287.
SAMPAT M P, WANG Z, GUPTA S, et al.. Complex wavelet structural similarity:a new image similarity index[J]. IEEE Transactions on Image Processing, 2009, 18(11):2385-2401.
SHEIKH H R, BOVIK A C, CORMACK L K. Blind quality assessment of JPEG2000 compressed images using natural scene statistics(Invited Paper)[C]. Proceedings of 37th IEEE Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, 2003:1403-1407.
SAAD M A, BOVIK A C. Blind image quality assessment:A natural scene statistics approach in the DCT domain[J].IEEE Transactions on Image Processing, 2012, 21(8):3339-3352.
ZHANG M, MURAMATSU C, ZHOU X R. Blind image quality assessment using the joint statistics of generalized local binary pattern[J].IEEE Signal Processing Letters, 2015, 22(2):207-210.
ZHANG Y, MOORTHY A K, CHANDLER D M. C-DIIVINE:No-reference image quality assessment based on local magnitude and phase statistics of natural scenes[J]. Signal Processing:Image Communication, 2014, 29:725-747.
陈勇, 李愿, 吕霞付,等. 视觉感知的彩色图像质量积极评价[J]. 光学 精密工程,2013, 21(3):742-750. CHEN Y, LI Y, LV X F, et al.. Active assessment of color image quality based on visual perception[J]. Opt. Precision Eng., 2013, 21(3):742-750.(in Chinese)
袁飞, 黄联芬, 姚彦. 基于视觉掩盖效应和奇异值分解的图像质量评测方法[J]. 光学 精密工程, 2008, 16(4):706-713. YUAN F, HUANG L F,YAO Y. Image quality evaluation based on visual masking effect and singular value decomposition[J].Opt. Precision Eng., 2008, 16(4):706-713.(in Chinese)
郁梅, 孔真真, 朱江英. 基于视觉阈值及通道融合的立体图像质量评价[J]. 光学 精密工程, 2013, 21(6):1605-1612. YU M, KONG ZH ZH, ZHU J Y. Stereoscopic image quality assessment based on visual threshold and channel fusion[J].Opt. Precision Eng., 2013, 21(6):1605-1612.(in Chinese)
XUE W, ZHANG L, MOU X, et al.. Gradient magnitude similarity deviation:a highly efficient perceptual image quality index[J]. IEEE Transaction on Image Processing, 2014, 23(2):684-695.
SU C C,CORMACK L K,BOVIK A C.Bivariate statistical modeling of color and range in natural scenes[C].Proceedings of SPIE, San Francisco, California, USA, 2014, 90141G:1-10.
LI C F, JU Y W, BOVIK A C, et al.. No-training, no-reference image quality index using perceptual features[J].Optical Engineering, 2013,52(5):057003-1-057003-6.
PENG P, LI Z N. General-purpose image quality assessment based on distortion-aware decision fusion[J]. Neurocomputing,2014,134:117-121.
YUN N, FENG Z Y, YANG J C, et al.. The objective quality assessment of stereo image[J].Neurocomputing, 2013,120:121-129.
MITTAL A, MURALIDHAR G S, GHOSH J, et al.. Blind image quality assessment without human training using latent quality factors[J]. IEEE Signal Processing Letters, 2012,19(2):75-78.
PONOMARENKO N, JIN L, IEREMEIEV O, et al.. Image database TID2013:Peculiarities, results and perspectives[J]. Signal Processing:Image Communication, 2015, 30:57-77.
DUMIC E, GRGIC S, GRGIC M. IQM2:new image quality measure based on steerable pyramid wavelet transform and structural similarity index[J].Signal Image and Video Processing, 2014, 8(6):1159-1168.
STRICKER M A, ORENGO M. Similarity of color images[C]. Proceedings of SPIE, San Jose, USA, 1995:1-12.
BOMBRUN L, PASCAL F, TOURNERET J Y, et al.. Performance of the maximum likelihood estimators for the parameters of multivariate generalized gaussian distributions[C]. IEEE International Conference on Acoustic, Speech and Signal Processing, Kyoto, Japan, 2012:3525-3528.
SHEIKH H R, WANG Z, CORMACK L, et al.. LIVE image quality assessment database release 2[OL].[2015-06-15] http://live.ece.utexas.edu/research/quality.
SHEIKH H R, SABIR M F, BOVIK A C. A statistical evaluation of recent full reference image quality assessment algorithms[J]. IEEE Transactions on Image Processing, 2006, 15(11):3440-3451.
WANG Z, BOVIK A C, SHEIKH H R, et al.. Image quality assessment:from error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004, 13(4):600-612.
LARSON E C, CHANDLER D M.Most apparent distortion:full-reference image quality[J]. Journal of Electronic Imaging, 2010, 19(1):011006.
VQEG. Final report from the video quality experts group on the validation of objective models of video quality assessment-Phase Ⅱ[OL].[2003-06-20]http://www.vqeg.org/.
MITTAL A, MOORTHY A K, BOVIK A C. No-reference image quality assessment in the spatial domain[J]. IEEE Transactions on Image Processing, 2012, 21(12):4695-4708.
MITTAL A, MOORTHY A K, BOVIK A C. Blind/referenceless image spatial quality evaluator[C]. Forty-fifth Annual Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, 2011:723-727.
MOORTHY A K, BOVIK A C. A two-step framework for constructing blind image quality Indices[J]. IEEE Signal Processing Letters, 2010, 17(5):513-516.
LIU L, LIU B, HUANG H, et al.. No-reference image quality assessment based on spatial and spectral entropies[J]. Signal Processing:Image Communication, 2014, 29(8):856-863.
0
浏览量
517
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构