浏览全部资源
扫码关注微信
1. 中国科学院 长春光学精密机械与物理研究所,吉林 长春,中国,130033
2. 中国科学院大学 北京,中国,100049
3. 中国科学院 苏州生物医学工程技术研究所,江苏 苏州,中国,215163
收稿日期:2015-03-06,
修回日期:2015-04-16,
纸质出版日期:2015-11-25
移动端阅览
卢彦飞, 张涛, 章程. 应用log-Gabor韦伯特征的图像质量评价[J]. 光学精密工程, 2015,23(11): 3259-3269
LU Yan-fei, ZHANG Tao, ZHANG Cheng. Image quality assessment using log-Gabor Weber feature[J]. Editorial Office of Optics and Precision Engineering, 2015,23(11): 3259-3269
卢彦飞, 张涛, 章程. 应用log-Gabor韦伯特征的图像质量评价[J]. 光学精密工程, 2015,23(11): 3259-3269 DOI: 10.3788/OPE.20152311.3259.
LU Yan-fei, ZHANG Tao, ZHANG Cheng. Image quality assessment using log-Gabor Weber feature[J]. Editorial Office of Optics and Precision Engineering, 2015,23(11): 3259-3269 DOI: 10.3788/OPE.20152311.3259.
考虑人眼对亮度的感知符合韦伯定律的特点
本文利用log-Gabor滤波器模拟人眼对图像的感知过程
提出了一种新的log-Gabor韦伯特征
以便保留不同尺度的符合人眼感知的结构信息。基于此
还提出了一种应用log-Gabor韦伯特征的图像质量评价方法。首先将待评价失真图像和参考图像从RGB空间转换到YIQ颜色空间
分离亮度分量和颜色分量。然后利用log-Gabor韦伯特征和梯度特征计算亮度分量失真
并结合颜色分量的失真
得到失真图像与参考图像的局部相似度图。最后利用修正的CSF函数
对局部相似度图进行加权
得到图像质量评价指标。在LIVE、CSIQ和IVC3个图像库上的实验结果表明
本文方法与人眼主观感知有很好的一致性
而且相对于其他方法
表现更加稳定。本文方法在3个图像库上的加权Spearman秩相关系数(SROCC)为0.9498
Kendall秩相关系数(KROCC)为0.8026
Pearson线性相关系数(PLCC)为0.9438
相比对比方法有显著的提高。
As human eye perception for the brightness accords with the Weber's law
this paper uses the log Gabor filter to simulate the human eye perception for an image and proposes a new log Gabor Weber characteristics to keep the structural information interested by human for different scales. To assess the image quality more effectively
a new image quality assessment method was proposed by using log-Gabor Weber feature. The log-Gabor filter and Weber's law were used to obtain a new feature named log-Gabor Weber feature(LGW). Firstly
the distorted image and reference image were transformed from the RGB color space into a YIQ color space to separate the luminance component and the chromatic component. Then
the LGW feature and gradient feature were used to calculate the distortion of luminance component. Furthermore
the distortion of chromatic component was integrated to get the local similarity map between distorted image and reference image. Finally
a modified CSF pooling strategy was applied to the overall local similarity map to obtain the final image quality index. The experimental results on three benchmark image databases
LIVE
CSIQ and IVC
indicate that the proposed method owns a good consistency with human subjective perception and it has a more stable performance as compared with other state-of-the-art methods. The weighted Spearman Rank Order Correlation Coefficient(SROCC)
Kendallrank-order Correlation Coefficient(KROCC) and the Pearsonlinear Correlation Coefficient
PLCC) values on three databases by the proposed method are 0.9498
0.8026 and 0.9438
respectively
which notably outperform other methods.
SHEIKH H R, SABIR M F, BOVIK A C. A statistical evaluation of recent full reference image quality assessment algorithms[J]. IEEE Transactions on Image Processing, 2006, 15(11):3443-3452.
范媛媛,沈湘衡,桑英军. 基于对比度敏感度的无参考图像清晰度评价[J]. 光学 精密工程,2011,19(10):2485-2493. FAN Y Y, SHEN X H, SANG Y J. No reference image sharpness assessment based on contrast sensitivity[J]. Opt. Precision Eng., 2011, 19(10):2485-2493.(in Chinese)
DAMERA-VENKATA N,KITE T D, GEISLER W S, et al.. Image quality assessment based on a degradation model[J]. IEEE Transactions on Image Processing, 2000, 9(4):636-650.
CHANDLER D M, HEMAMI S S. VSNR:A wavelet-based visual signal-to-noise ratio for natural images[J].IEEE Transactions on Image Processing, 2007, 16(9):2284-2298.
WANG Z, BOVIK A C, SHEIKH H R,et al.. Image quality assessment:from error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004, 13(4):600-612.
WANG Z, SIMONCELLI E P, BOVIK A C. Multiscale structural similarity for image quality assessment[C]. IEEE Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, USA, 2003:1398-1402.
WANG Z, LI Q. Information content weighting for perceptual image quality assessment[J]. IEEE Transactions on Image Processing, 2011, 20(5):1185-1198.
SHEIKH H R, BOVIK A C, VECIANA G. An information fidelity criterion for image quality assessment using natural scene statistics[J].IEEE Transactions on Image Processing, 2005, 14(12):2117-2128.
SHEIKH H R, BOVIK A C. Image information and visual quality[J].IEEE Transactions on Image Processing, 2006, 15(2):430-444.
ZHANG L, ZHANG L, MOU X Q, et al.. FSIM:A feature similarity index for image quality assessment[J]. IEEE Transactions on Image Processing, 2011, 20(8):2378-2386.
LIU A, LIN W, NARWARIA M. Image quality assessment based on gradient similarity[J]. IEEE Transactions on Image Processing, 2012, 21(4):1500-1512.
ZHANG L, SHEN Y, LI H Y. VSI:A visual saliency-induced index for perceptual image quality assessment[J]. IEEE Transactions on Image Processing, 2014, 23(10):4270-4281.
王宇庆,朱明. 评价彩色图像质量的四元数矩阵最大奇异值方法[J]. 光学 精密工程,2013,21(2):469-478. WANG Y Q, ZHU M. Maximum singular value method of quaternion matrix for evaluating color image quality[J]. Opt. Precision Eng., 2013, 21(2):469-478.(in Chinese)
FIELD D J. Relations between the statistics of natural images and the response properties of cortical-cells[J].Journal of the Optical Society of America A A-Optics Image Science and Vision, 1987, 4(12):2379-2394.
CHEN J, SHAN S, HE C,et al.. WLD:A robust local image descriptor[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(9):1705-1720.
MANNOSJ L, SAKRISON D J. The effects of a visual fidelity criterion on the encoding of images[J]. IEEE Transactions on Information Theory, 1974,20(4):526-536.
SHEIKH H R, WANG Z, CORMACK L,et al.. LIVE image quality assessment database,release 2[OL/EB]. Available:http://live.ece.utexas.edu/research/quality.
Final Report From the Video Quality Experts Group on the Validation of Objective Models of Video Quality Assessment, Phase II VQEG[OL/EB]. Available:http://www.vqeg.org/.
程光权,张继东,成礼智,等. 基于几何结构失真模型的图像质量评价研究[J]. 自动化学报,2011,37(7):811-819. CHENG G Q, ZHANG J D, CHENG L ZH, et al.. Image quality assessment based on geometric structural distortion model[J]. ACTA AUTOMATIC SINICA, 2011, 37(7):811-819.(in Chinese)
LARSON C, CHANDLER D M. Categorical Image Quality(CSIQ) Database 2009[OL/EB]. Available:http://vision.okstate.edu/csiq.
NINASSI A, LECALLET P, AUTRUSSEAU F. Subjective Quality Assessment IVC Database 2005[OL/EB]. Available:http://www2.irccyn.ecnantes.fr/ivcdb.
0
浏览量
388
下载量
6
CSCD
关联资源
相关文章
相关作者
相关机构