浏览全部资源
扫码关注微信
1. 中国科学院 长春光学精密机械与物理研究所,吉林 长春,中国,130033
2. 中国科学院大学, 北京 101408
修回日期:2015-08-13,
纸质出版日期:2015-12-25
移动端阅览
巴音贺希格, 李涛涛, 潘明忠等. 光栅-平面镜型可调式空间外差光谱仪[J]. 光学精密工程, 2015,23(12): 3295-3302
Bayanheshig, LI Tao-tao, PAN Ming-zhong etc. Tunable spatial heterodyne spectroscopy with grating-mirror structure[J]. Editorial Office of Optics and Precision Engineering, 2015,23(12): 3295-3302
巴音贺希格, 李涛涛, 潘明忠等. 光栅-平面镜型可调式空间外差光谱仪[J]. 光学精密工程, 2015,23(12): 3295-3302 DOI: 10.3788/OPE.20152312.3295.
Bayanheshig, LI Tao-tao, PAN Ming-zhong etc. Tunable spatial heterodyne spectroscopy with grating-mirror structure[J]. Editorial Office of Optics and Precision Engineering, 2015,23(12): 3295-3302 DOI: 10.3788/OPE.20152312.3295.
针对空间外差光谱技术测量光谱范围较窄(10 nm左右)
制约其应用范围的问题
提出了一种光栅-平面镜结构的可调式空间外差光谱仪系统。该系统将传统的双平面光栅式空间外差光谱仪中的一块光栅换成平面镜
让另一块光栅可旋转来组成可调式结构; 通过旋转光栅切换测量波段
展宽其测量范围;对平面镜施加微小俯仰角以确保谱图还原的单值性;从而拓展了仪器的应用范围。搭建了原理样机并对其性能进行了实验验证。结果表明
设计的仪器的光谱范围达到了100 nm左右
分辨率优于0.29 nm。该仪器结构简单
光栅制作难度低
易于实现谱图还原。另外
通过增加光栅旋转切换次数和引入抑制杂光措施等手段
还可进一步展宽波段范围
提高系统光谱分辨率。
As Spatial Heterodyne Spectroscopy (SHS) technology has a narrower spectral bandpass (about 10 nm) and its applications are restricted generally
this paper proposes a tunable SHS with a grating-mirror structure to widen the application ranges of the spectrometer. The tunable structure in the spectrometer is implemented by taking a plane mirror to replace a grating in the traditional double grating SHS system
meanwhile allowing another grating to rotate. It switches measuring band to broaden measurement range and applies a small pitching angle on the plane mirror to ensure the monodromy of the recover spectra
by which the application ranges of the spectroscopy are expanded. A prototype is established to verify the feasibility of the proposed SHS. The experiment result shows that the designed SHS has the bandpass range up to about 100 nm and its spectral resolution is better than 0.29 nm. The spectrometer has a simple structure and its grating production and spectral reduction are easy to be implemented. Moreover
by increasing the rotated times of the grating and introducing methods to eliminate stray light
etc
it will expand the its bandpass farther and improve the spectral resolution.
ROESLER F L,HARLANDER J. Spatial heterodyne spectroscopy: interferometric performance at any wavelength without scanning[C].Spectroscopy '90, 4-6 June, Los Cruces International Society for Optics and Photonics, 1990:234-243.
HARLANDER J,ROESLER F L,CARDON J G, et al..SHIMMER: a spatial heterodyne spectrometer for remote sensing of Earth ' s middle atmosphere [J].Applied Optics, 2002,41(7):1343-1352.
MIERKIEWICZ E J, ROESLER F L,HARLANDER J, et al..First light performance of a near-UV spatial heterodyne spectrometer for interstellar emission line studies[J]. SPIE, 2004, 5492:751-766.
BUTCHER H,DOUGLAS N,FRANDSEN S, et al.. A practical non-scanning FTS for astronomy. High resolution Fourier transform spectroscopy[J]. OSA Technical Digest Series, 1989,6:9-12.
叶松, 方勇华, 洪津,等. 空间外差光谱仪系统设计[J]. 光学 精密工程,2006,14(6):959-964. YE S,FANG Y H,HONG J,et al..System design of spatial heterodyne spectrometer[J].Opt.Precision Eng.,2006,14(6):959-964.(in Chinese)
熊伟,施海亮,汪元钧,等. 近红外空间外差光谱仪及水汽探测研究[J]. 光学学报,2010(5):1511-1514. XIONG W,SHI H L,WANG Y J, et al..Study on near-infrared spatial heterodyne spectrometer and detection of water vapor[J]. Acta Optica Sinica, 2010(5):1511-1514.(in Chinese)
GORNUSHKIN I B,SMITH B W,PANNE U, et al.. Laser-induced breakdown spectroscopy combined with spatial heterodyne spectroscopy[J]. Applied Spectroscopy, 2014, 68 (9): 1076-1084.
HOSSEINI S S, GONG A, RUTH D, et al.. Tunable Spatial Heterodyne Spectroscopy (TSHS): a new technique for broadband visible interferometry[C]. In: SPIE Astronomical Telescopes+ Instrumentation: International Society for Optics and Photonics, 2010: 77343J-77343J-77312.
FENG Y, BAI Q, YAN P, et al.. Experimental research for broadband spatial heterodyne spectroscopy[C].Photonics Asia 2010International Society for Optics and Photonics, 2010:78501U-78501U-8.
ENGLERT C R,BABCOCK D D,HARLANDER J M. Spatial heterodyne spectroscopy for long-wave infrared: first measurements of broadband spectra[J]. Optical Engineering, 2009, 48(10):105602-105609.
HARLANDER J M, LAWLER J E,CORLISS J,et al.. First results from an all-reflection spatial heterodyne spectrometer with broad spectral coverage[J]. Optics Express, 2010, 18 (6): 6205-6210.
唐玉国, 宋楠, 巴音贺希格,等. 中阶梯光栅光谱仪的光学设计[J]. 光学 精密工程,2010,18(9):1989-1995. TANG Y G,SONG N, BAYANHESHIG, et al..Optical design of cross-dispersed echelle spectrograph[J]. Opt. Precision Eng.,2010,18(9):1989-1995.(in Chinese)
唐玉国,陈少杰,巴音贺希格,等. 中阶梯光栅光谱仪的谱图还原与波长标定[J]. 光学 精密工程,2010,18(10):2130-2136. TANG Y G,CHEN SH J, BAYANHESHIG, et al.. Spectral reducing of cross-dispersed echelle spectrograph and its wavelength calibration[J]. Opt.Precision Eng., 2010,18(10):2130-2136. (in Chinese)
冯玉涛, 孙剑, 李勇, 等. 宽谱段空间外差干涉光谱仪[J]. 光学 精密工程,2015,23(1):48-55. FENG Y T,SUN J,LI Y,et al..Broad-band spatial heterodyne interferometric spectrometer[J]. Opt.Precision Eng.,2015,23(1):48-55.(in Chinese)
HARLANDER J M,ROESLER F L,CHAKRABA-RTI S.. Spatial heterodyne spectroscopy: A novel interferometric technique for the FUV[C]. In: San Dieg-DL Tentative: International Society for Optics and Photonics, 1990: 120-131.
杨勇, 熊伟, 叶擎昊, 等. 空间外差光谱仪的平场波长定标实验与数据处理[J]. 光学 精密工程, 2013,21(10):2508-2512. YE Y,XIONG W,YE Q H,et al..Experiments of flat-field wavelength calibration of spatial heterodyne spectrometer and its data processing[J]. Opt. Precision Eng., 2013,21(10):2508-2512.(in Chinese)
0
浏览量
446
下载量
3
CSCD
关联资源
相关文章
相关作者
相关机构