浏览全部资源
扫码关注微信
1. 上海理工大学 机械工程学院 上海,200093
2. 哈尔滨工业大学 机电工程学院,黑龙江 哈尔滨 150001
修回日期:2015-07-26,
纸质出版日期:2015-12-25
移动端阅览
景大雷, 潘昀路,. 静磁场对固液界面表面电荷性质的影响[J]. 光学精密工程, 2015,23(12): 3343-3349
JING Da-lei, PAN Yun-lu,. Effect of static magnetic field on surface charges of solid-liquid interfaces[J]. Editorial Office of Optics and Precision Engineering, 2015,23(12): 3343-3349
景大雷, 潘昀路,. 静磁场对固液界面表面电荷性质的影响[J]. 光学精密工程, 2015,23(12): 3343-3349 DOI: 10.3788/OPE.20152312.3343.
JING Da-lei, PAN Yun-lu,. Effect of static magnetic field on surface charges of solid-liquid interfaces[J]. Editorial Office of Optics and Precision Engineering, 2015,23(12): 3343-3349 DOI: 10.3788/OPE.20152312.3343.
考虑磁场对固液界面表面电荷性质的影响与微纳流体系统的流体阻力相关
本文采用原子力显微镜(AFM)研究了静磁场对去离子水黏度以及高硼硅玻璃-去离子水界面表面电荷性质的影响
并分析了静磁场对去离子水性质影响的机理。研究结果表明
将去离子水静置于磁场强度为0~0.6 T的静磁场下30 min时
去离子水的黏度随磁场强度的增加而减小
而高硼硅玻璃-磁化水界面的表面电荷密度随磁场强度的增加而增加;静磁场对去离子水性质影响的机理是磁场引起的去离子水内氢键以及氢氧键的断裂。研究结果同时表明
磁场可以有效地改变固液界面的表面电荷性质。本文的研究结果为利用磁场有效地控制微纳流体系统的流体阻力提供了可能。
As the effect of a static magnetic field on the surface charge of solid-liquid interfaces is related to the fluid drag of micro/nano fluidic systems
this paper researches the effects of the static magnetic field on the viscosity of deionized (DI) water and the surface charges of borosilicate glass-DI water interfaces and analyzes the effect mechanism of static magnetic field on the properties of DI water. The experimental results show that when the DI water is exposed in the static magnetic field with a magnetic field intensity of 0 T to 0.6 T for 30 min
the viscosity of DI water decreases with increasing magnetic field intensity and the surface charge density of borosilicate glass-DI water interface increases with the increasing magnetic intensity. The effect mechanisms of static magnetic field on the properties of DI water are the breaking of hydrogen bond and O-H bond caused by the magnetic field. The research indicates that the static magnetic field changes the surface charge properties of solid-liquid interfaces.The research in this paper provides a possible method to control the fluid drag at micro/nano scales using magnetic fields.
BHUSHAN B. Springer Handbook of Nanotechnology[M]. Springer-Verlag, 2010.
LIN B. Microfluidics: Technologies and Applications[M]. Springer-Verlag, 2011.
OU J, PEROT B, ROTHSTEIN J P. Laminar drag reduction in microchannels using ultrahydrophobic surfaces[J]. Physics of Fluids, 2004, 16(12):4635-4643.
LI D Q. Electrokinetics in Microfluidics[M]. Academic Press, 2004.
STEINBERGER A, COTTIN-BIZONNE C, KLEIMA-NN P, et al.. High friction on a bubble mattress[J]. Nature Materials, 2007,6(9):665-668.
JING D L, BHUSHAN B. Effect of boundary slip and surface charge on the pressure-driven flow[J]. Journal of Colloid and Interface Science, 2013, 392:15-26.
LI C, CHEN L, REN Z. Surface tensions of non-polar liquids in high magnetic fields[J]. Journal of Molecular Liquids, 2013, 181:51-54.
SUEDA M, KATSUKI A, NONOMURA M, et al.. Effects of high magnetic field on water surface phenomena[J].J. Phys. Chem. C, 2007, 111(39):14389-14393.
OTSUKA I, OZEKI S. Does magnetic treatment of water change its properties [J].The Journal of Physical Chemistry B, 2006, 110(4):1509-1512.
PANG X, DENG B. The changes of macroscopic features and microscopic structures of water under influence of magnetic field[J]. Physica B, 2008(19-20), 403:3571-3577.
SZCZES A, CHIBOWSKI E, HOZYSZ L, et al.. Effects of static magnetic field on electrolyte solutions under kinetic condition[J]. The Journal of Physical Chemistry A, 2011, 115(21):5449-5452.
TOLEDO E J, RAMALHO T C, MAGRIOTIS Z M. Influence of magnetic field on physical-chemical properties of the liquid water: insights from experimental and theoretical models[J].Journal of Molecular Structure,2008, 888(1-3): 409-415.
ZHOU K X, LU G W, ZHOU Q C, et al.. Monte Carlo simulation of liquid water in a magnetic field[J].Journal of Applied Physics,2000, 88(4): 1802-1805.
CHANGA K T, WENG C I. The effect of an external magnetic field on the structure of liquid water using molecular dynamics simulation[J]. Journal of Applied Physics, 2006,100(4):1-6.
IWASAKAA M, UENO S. Structure of water molecules under 14T magnetic field[J]. Journal of Applied Physics, 1998,83(11):6459-6462.
GHAURIA S, ANSARI M. Increase of water viscosity under the influence of magnetic field[J]. Journal of Applied Physics, 2006,100(6):457-461.
丁振瑞,赵亚军,陈凤玲,等. 磁化水的磁化机理研究[J]. 物理学报. 2011,60(6):064701. DING ZH R, ZHAO Y J, CHEN F L, et al.. Magnetization mechanism of magnetized water[J]. Acta Physica Sinica, 2011, 60(6):064701.(in Chinese)
VINOGRADOVA O I. Drainage of a thin liquid film confined between hydrophobic surfaces[J].Langmuir, 1995, 11(6): 2213-2220.
HAYNES W M. Handbook of Chemistry and Physics[M]. Academic Press, 2010.
JING D L, BHUSHAN B. Quantification of surface charge density and its effect on boundary slip[J]. Langmuir,2013,29(23):6953-6963.
BOLT G H. Determination of the charge density of silica sols[J]. The Journal of Chemical Physics, 1957, 61(9):1166-1169.
0
浏览量
347
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构