浏览全部资源
扫码关注微信
1. 中国科学院 长春光学精密机械与物理研究所, 吉林 长春 130033
2. 中国科学院大学, 北京 100049,中国
修回日期:2015-03-06,
纸质出版日期:2015-12-25
移动端阅览
付锦江, 颜昌翔, 刘伟等. 快速控制反射镜两轴柔性支撑平台刚度优化设计[J]. 光学精密工程, 2015,23(12): 3378-3386
FU Jin-jiang, YAN Chang-xiang, LIU Wei etc. Stiffness optimization of two-axis flexible supporting platform for fast steering mirror[J]. Editorial Office of Optics and Precision Engineering, 2015,23(12): 3378-3386
付锦江, 颜昌翔, 刘伟等. 快速控制反射镜两轴柔性支撑平台刚度优化设计[J]. 光学精密工程, 2015,23(12): 3378-3386 DOI: 10.3788/OPE.20152312.3378.
FU Jin-jiang, YAN Chang-xiang, LIU Wei etc. Stiffness optimization of two-axis flexible supporting platform for fast steering mirror[J]. Editorial Office of Optics and Precision Engineering, 2015,23(12): 3378-3386 DOI: 10.3788/OPE.20152312.3378.
基于椭圆弧柔性铰链兼顾了直梁型柔性铰链运动范围大和圆弧型柔性铰链运动精度高的特点
设计了基于椭圆弧柔性铰链的二维快速控制反射镜系统两轴柔性支撑平台。为使柔性支撑平台快速响应性好
即使其低阶固有频率最大化
对该柔性支撑平台进行了结构优化设计。理论推导了单个柔性铰链最大刚度与许用应力、转角和铰链参数的理论计算公式。然后
采用集总参数的分析方法
得出了两轴柔性支撑平台低阶最大固有频率的理论计算公式。由公式可知:在转动惯量一定的情况下
低阶固有频率最大化即为工作方向刚度最大化。最后
通过有限元仿真和实验检测验证了理论计算的准确性
得到的结果显示:柔性支撑平台的最大固有频率和最大应力的理论值与仿真值的相对误差小于5%
平台工作刚度的理论值与仿真值、实测值的相对误差分别为3.86%和5.75%。仿真和实验结果表明:利用本文推导的理论公式进行柔性支撑平台刚度优化设计
既可以满足工程设计要求
又能省去繁杂的有限元计算。
Elliptic flexure hinges have both advantages of larger moving ranges and higher moving accuracy from right-angle flexure hinges and circular flexure hinges. Therefore
this paper designs a two axis flexible supporting platform with an elliptic flexure hinge used in a fast steering mirror system. For a fast response required by the system
the flexible supporting platform needs to maximize its natural frequency within the material's allowable stress. Firstly
the theoretical formulas of the maximum stiffness including the parameters of the allowable stress and rotating angle are deduced. The lumped parameter analysis method is adopted to obtain the relationship between the stiffness of flexible supporting platform and the stiffness of single flexure hinge. Then
the closed-form solution about the low order natural frequency of the two axis flexible support platform is deduced. A finite element model are created to perform experiments to assess those equations . The results compared by finite element analysis and theoretic calculation show that the relative error of the platform's natural frequency and maximum stress is within 5%. The relative errors of platform's stiffness got by the experiment
simulation and the theoretic calculation are 3.86% and 5.75%
respectively. These results indicate that the theoretical formula proposed in this paper is benefit for engineering structural design
it not only meets the requirements of engineering design
but also saves a lot of time .The most important thing is that it can help to achieve the optimal stiffness in theory.
赵宏伟, 吴博达, 曹殿波,等. 直角柔性铰链的力学特性[J]. 纳米技术与精密工程, 2007,5(2):143-147. ZHAO H W,WU B D,CAO D B,et al.. Mechanical performance of right-angle flexure hinge[J]. Nanotechnology and Precision Engineering,2007,5(2):143-147. (in Chinese)
PAROS J M, WEISBORD. How to design flexure hinges [J]. Machine Design, 1965,37:151-156.
TSEYTLIN Y M. Notch flexure hinges: An effective theory [J]. Review of Scientific Instruments, 2002,73(9):3363-3367.
WU Y, ZHOU Z. Design calculations for flexure hinges[J]. Review of Scientific Instruments, 2002,73(8):3101-3107.
LOBONTIU N, PAINE J S N, O'MALLEY E, et al.. Parabolic and hyperbolic flexure hinges: flexibility, motion precision and stress characterization based on compliance closed-form equations [J]. Precision Engineering, 2002,26(2):183-192.
SMITH S T, BADAMI V G, DALE J S, et al.. Elliptical flexure hinges[J]. Review of Scientific Instruments, 1997,68(3):1474-1478.
TIAN Y, SHIRINZADEH B, ZHANG D. Closed-form compliance equations of filleted V-shaped fl exure hinges for compliant mechanism design[J]. Precision Engineering, 2010,34:408-418.
CHEN G, WANG J, LIU X. Generalized equations for estimating stress concentration factors of various notch flexure hinges [J]. Journal of Mechanical Design, 2014,136(3):031009.
W R J, G G D. Error analysis of a flexure hinge mechanism induced by machining imperfection[J]. Precision Engineering, 1997,21: 83-89.
LOBONTIU N, CULLIN M, PETERSEN T. Planar compliances of symmetric notch flexure hinges the right circularly corner-filleted parabolic design[J]. IEEE Transactions on Automation Science and Engineering, 2014,11(1):169-176.
LOBONTIU N, PAINE J S N, GARCIA E, et al.. Corner-filleted flexure hinges [J]. Journal of Mechanical Design, 2001,123(3):346-351.
LIN R, ZHANG X, LONG X, et al.. Hybrid flexure hinges[J]. Review of scientific instruments, 2013,84(8):085004.
CHEN G, SHAO X, HUANG X. Elliptically-arc- fillet flexure hinges: Toward a generalized model for commonly used flexure hinges[J]. ASME J Mech Design, 2011,133:081002.
ZELENIKA S, MUNTEANU M G, DE BONA F. Optimized flexural hinge shapes for microsystems and high-precision applications[J]. Mechanism and Machine Theory, 2009,44(10):1826-1839.
鲁亚飞.快速反射镜机械结构特性设计问题研究[D]. 长沙:国防科学技术大学,2009. LU Y F. Research on Fast/Fine Steering Mirror system [D].Changsha: National University of Defense Technology,2009. (in Chinese)
何煦, 向阳. 数字横向剪切干涉仪相移技术[J]. 光学 精密工程, 2013,21(9):2245-2251. HE X,XIANG Y. Phase-shifting technology of digital lateral shearing interferometer[J].Opt. Precision Eng., 2013,21(9):2245-2251. (in Chinese)
SEO K, CHO S, KIM T, et al.. Design and stability analysis of a novel wall-climbing robotic platform (ROPE RIDE)[J]. Mechanism and Machine Theory, 2013,70:189-208.
SEO T W, SITTI M. Tank-like module-based climbing robot using passive complaint joints[J]. IEEE/ASME Trans Mechatron, 2013,18:397-408.
TIAN Y, SHIRINZADEH B, ZHANG D. Design and dynamics of a 3-DOF flexure-based parallel mechanism for micro/nano manipulation[J]. Microelectronic Engineering, 2010,87(2):230-241.
YAN D Q, SHIRINZADEH B, YANLING T, et al.. Design and computational optimization of a decoupled 2-DOF monolithic mechanism[J]. IEEE/ASME Transactions on Mechatronics, 2014,19(3):872-881.
0
浏览量
360
下载量
4
CSCD
关联资源
相关文章
相关作者
相关机构