浏览全部资源
扫码关注微信
南京理工大学 机械工程学院,江苏 南京,中国,210094
修回日期:2015-08-21,
纸质出版日期:2015-12-25
移动端阅览
何博侠, 李春雷, 李江平等. 航天密封圈智能测量与检测系统的集成[J]. 光学精密工程, 2015,23(12): 3395-3404
HE Bo-xia, LI Chun-lei, LI Jiang-ping etc. Integration of intelligent measurement and detection for sealing rings used in aerospace systems[J]. Editorial Office of Optics and Precision Engineering, 2015,23(12): 3395-3404
何博侠, 李春雷, 李江平等. 航天密封圈智能测量与检测系统的集成[J]. 光学精密工程, 2015,23(12): 3395-3404 DOI: 10.3788/OPE.20152312.3395.
HE Bo-xia, LI Chun-lei, LI Jiang-ping etc. Integration of intelligent measurement and detection for sealing rings used in aerospace systems[J]. Editorial Office of Optics and Precision Engineering, 2015,23(12): 3395-3404 DOI: 10.3788/OPE.20152312.3395.
为了实现航天用O形密封圈的智能化全自动测量与检测
建立了双工位智能测量与检测系统
研究了大量程测量与曲面缺陷检测系统集成方案以及测量路径自主规划技术。首先
针对O形圈的柔性结构、曲面外形以及内径与截面直径之比跨度大的特点
提出基于多视场协同的双工位智能测量与检测方案
介绍了系统集成方法及其工作原理。然后
根据密封圈在大视场中的全景图信息及检测路径规划基本准则
导出了通用的小视场图像采集路径计算方法。最后
建立了密封圈检测路径的物理坐标与大视场图像坐标的映射关系
实现了系统的智能化全自动检测。实验结果表明:本集成方案能够对外形尺寸为
Φ
5.4~
Φ
140 mm的O形圈进行智能化自主测量与检测
实际检测路径的位置与理想位置之间的平均误差为0.086 mm;与手工测量和检测相比
效率提高了20倍以上
能够满足航天用精密密封圈的智能、高效、全自动测量与检测要求。
To achieve the intelligent and automatic measurement and detection of 'O' rings used in aerospace systems
a double-station intelligent measuring and detecting system was established. The integrating method of wide-range measurement and defect detection in curved surfaces was proposed
and the autonomous measuring path planning technology was investigated. Aiming at the flexible structure and the curved surface shape of 'O' rings and the wide range of the ratio between the inner diameter and the section diameter
an intelligent measuring and detecting scheme of double-station based on the cooperation of multiple fields of view (FOV) was proposed. The system integrating method and its working principle were introduced. Then
according to the information extracted from the panoramic image of the 'O' rings in the large FOV and the basic rule of path planning
the general calculating method of the acquisition path of small FOVs was derived. Finally
the mapping relationship between the position coordinates of detecting path and their image coordinates in the large FOV was established to realize the intelligent and automatic detection of 'O' rings. The experiment results show that the proposed scheme realizes the autonomous measurement and detection of 'O' rings whose inside diameters are in the range of
Φ
5.4-
Φ
140 mm. The average error between actual and ideal locations of detecting path is 0.086 mm. Compared with manual measuring and inspecting
the efficiency has been improved by more than 20 times. It satisfies the smart
efficient and automatic requirements of measuring and detecting precise sealing rings used in aerospace systems.
CHANDRASEKARAN V C. Rubber Seals for Fluid and Hydraulic Systems [M]. Burlington: Elsevier Inc., 2010.
郑金鹏,沈明学,孟祥铠,等. 机械密封用O形橡胶密封圈微动特性[J]. 上海交通大学学报,2014,48(6):856-862. ZHENG J P, SHEN M X, MENG X K, et al.. Fretting characteristics of the rubber O-ring for a mechanical seal[J]. Journal of Shanghai Jiao Tong University, 2014,48(6):856-862. (in Chinese)
GB/T 3452.液压气动用O形橡胶密封圈[S]. GB/T 3452. Fluid power systems-O-rings[S]. (in Chinese)
肖锋,王和顺. 基于图像的O型密封圈尺寸检测方法[J]. 润滑与密封,2014,39(1):93-96. XIAO F, WANG H SH. Size detection method of O-ring based on image[J]. Lubrication Engineering, 2014,39(1):93-96. (in Chinese)
陈里里,廖强. O形密封圈尺寸视觉精密测量技术[J]. 西南交通大学学报,2013,48(1):122-128. CHEN L L, LIAO Q. Vision-based precision measurement technology for O-Ring seal size [J]. Journal of Southwest Jiaotong University, 2013,48(1):122-128. (in Chinese)
KUMAR B M, RATNAM M M. Machine vision method for non-contact measurement of surface roughness of a rotating workpiece[J]. Sensor review, 2015, 1(35):10-19.
MAR N S S, YARLAGADDA P K D V, FOOKES C. Design and development of automatic visual inspection system for PCB manufacturing [J]. Robotics and Computer-Integrated Manufacturing, 2011, 27(5):949-962.
何博侠,何勇,卜雄洙,等. 机器视觉多视场协同测量方法[J]. 光学 精密工程,2012,20(12):2821-2829. HE B X, HE Y, BU X ZH, et al.. Coopeative measurement method of multi-FOV for machine vision [J]. Opt. Precision Eng., 2012,20(12):2821-2829. (in Chinese)
刘小勇,郑琨. 光纤缺陷实时检测与分类方法研究[J]. 西安交通大学学报,2014,48(9):1-5. LIU X Y, ZHENG K. Research on optical fiber defect real-time detection and classification[J]. Journal of Xi'an Jiaotong University, 2014,48(9) :1-5. (in Chinese)
黄风山,刘恩福,方忆湘,等. 基于智能三坐标测量机的零件位姿单目立体视觉识别[J]. 光学 精密工程, 2013,21(5):1326-1332. HUANG F SH, LIU E F,FANG Y X, et al.. Single camera stereo vision recognization for parts'pose based on intelligent three coordinate measuring machine[J]. Opt. Precision Eng., 2013, 21(5):1326-1332. (in Chinese)
HE B X, HE Y, XUE R, et al.. High-precision automatic measurement of two-dimensional geometric features based on machine vision[J]. Journal of Southeast University, 2012,1003(7985): 428-433.
杨永敏,樊继壮,赵杰. 基于超熵和模糊集理论的带钢表面缺陷分割[J]. 光学 精密工程,2011,19(7):1651-1658. YANG Y M, FAN J ZH, ZHAO J. Steel strip surface defect segmentation based on excess entropy and fuzzy set theory[J]. Opt. Precision Eng., 2011, 19(7):1651-1658. (in Chinese)
0
浏览量
381
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构