浏览全部资源
扫码关注微信
1. 吉林大学 机械科学与工程学院,吉林 长春,130025
2. 长春工业大学 机电学院,吉林 长春,130012
修回日期:2015-08-16,
纸质出版日期:2015-12-25
移动端阅览
张恩忠, 赵继, 冀世军等. 基于正交与插值算法的精密抛光平台综合误差建模与补偿[J]. 光学精密工程, 2015,23(12): 3422-3429
ZHANG En-zhong, ZHAO Ji, JI Shi-jun etc. Comprehensive error modeling and compensation for precision polishing platform based on orthogonal experiment and interpolation algorithm[J]. Editorial Office of Optics and Precision Engineering, 2015,23(12): 3422-3429
张恩忠, 赵继, 冀世军等. 基于正交与插值算法的精密抛光平台综合误差建模与补偿[J]. 光学精密工程, 2015,23(12): 3422-3429 DOI: 10.3788/OPE.20152312.3422.
ZHANG En-zhong, ZHAO Ji, JI Shi-jun etc. Comprehensive error modeling and compensation for precision polishing platform based on orthogonal experiment and interpolation algorithm[J]. Editorial Office of Optics and Precision Engineering, 2015,23(12): 3422-3429 DOI: 10.3788/OPE.20152312.3422.
为了提高四轴抛光平台的加工精度
本文针对以气浮平台和旋转台为主要运动方式的四轴抛光平台进行了几何与热综合误差建模与补偿研究。采用激光干涉仪、温度传感器等测量仪器分别对平台
X、Z
轴在不同温度下的定位误差进行重复测量与分析
证实了不同进给速度对定位误差没有显著影响。得到了四轴抛光平台
X、Z
轴的定位误差与温度之间的变化规律。基于正交多项式和插值算法分别建立了X、Z轴的几何与热综合误差模型。根据综合误差模型计算出预测数据曲线
并分别对
X、Z
轴的7组实验数据进行了数据拟合
拟合残差绝对值均不超过0.2 μm。依据预测数据进行了补偿实验。 结果显示
补偿后四轴抛光平台在常温下、温升(60 min)下和稳态下的
Z
轴定位误差分别降低了93.05%、92.45%、85.71%
X
轴定位误差分别降低了89.28%、93.59%、93.33%。实验结果证明本文所提出的综合模型及补偿方法精度高
鲁棒性好。
To improve the machining precision of four-axis polishing platforms
a geometric and thermal comprehensive error model and an error compensation method were researched for a four-axis polishing platform with a float platform and a rotation platform. Several kinds of instruments such as laser interferometer
temperature sensor were used to repeatedly measure and analyze respectively the positioning errors of
X
Z
axes at different temperatures and to verify that different feeding speeds were no significant influence on the positioning error. The change rules of between position error and temperature change for the polishing platform in
X
Z
axes were obtained. Based on orthogonal polynomial and interpolation algorithm
the geometric and thermal comprehensive error model of
X
Z
axes was established. According to the comprehensive error model
the prediction data curves were calculated
and seven groups of experimental data of
X
Z
axes were fitted and the fitting residual error absolute value was verified to be less than 0.2 μm. A compensation experiment was carried out according to the forecasting data. The results show that the
X
axis positioning errors of polishing platform under the normal temperature
the temperature rise of 60 min and steady state are respectively decreased by 89.33%
92.45% and 85.7% after compensation
and the
Z
-axis positioning errors are respectively reduced by 89.23%
93.59% and 93.33% after compensation. The experimental results demonstrate that the presented comprehensive model and compensation method have high precision and good robustness.
LEE E S,SUH S H,SHON J W. A compensative method for calibration of volumetric position accuracy for CNC machines[J].The International Journal of Advanced Manufacturing Technology, 1998,14:43-49.
刘又午. 多体动力学在机械工程领域的应用[J]. 中国机械工程,2000,11(2):144-149. LIU Y W. Application of multibody dynamic in mechanical engineering[J]. China Mechanical Engineering, 2000, 11(2):144-149.(in Chinese)
RAMESH R,MANNAN M A,POO A N. Error compensation in machine tools-a review part Ⅱ:Thermal errors[J]. International Journal of Machine Tools and Manufacture,2000,40(9):1257-1284.
CHEN J S,YUAN J X,NI J,et al.. Real-time compensation of time-variant volumetric errors on a maching center[J]. J. Eng. Ind.,1993.115(4):472-479.
ZHU W D,WANG ZH G,YAMAZAKI K. Machine tool component error extraction and error component error extraction and error compensation by incorporating statistical analysis[J]. International Journal of Machine, Tools & Manufacture,2010,50:798-806.
何振亚, 傅建中, 陈子辰. 基于球杆仪检测五轴数控机床主轴的热误差[J]. 光学 精密工程, 2015,23(5): 1401-1408. HE ZH Y, FU J ZH, CHEN Z CH. Thermal error measurement of spindle for 5-axis CNC machine tool based on ball bar[J]. Opt. Precision Eng., 2015,23(5): 1401-1408.(in Chinese)
杨建国,范开国,杜正春,等.数控机床误差补偿技术[M]. 北京:机械工业出版社,2013. YANG J G,FAN K G,DU ZH CH,et al.. Real Time Error Compensation Technology for CNC Machine Tools [M]. Beijing: China Machine Press,2013.
RAMMESH R,MANNAN M A. Error compensation in machine tools-A review. Part Ⅱ.Thermal errors[J]. Internation Journal of Machine Tool & Manufacture,2000,40(9):1257-1284.
VAN TUTTERVELT C A,PENG J. Symbiosis of modeling and sensing to improve the accuracy of workpieces in small batch machining operations[J]. The Internation Journal of Manufacturing Technology,1999,15(10): 699-710.
神经网络与模糊控制[M]. 北京:清华大学出版社,1998. Neural Network and Fuzzy Control [M]. Beijing: Tsinghua University Press, 1998.
苗恩铭,龚亚运,成天驹,等. 支持向量回归机在数控加工中心热误差建模中的应用[J]. 光学 精密工程,2013,21(4):980-986. MIAO EN M,GONG Y Y,CHENG T J,et al.. Application of support vector regression machine to thermal error modeling of machine tools [J]. Opt. Precision Eng.,2013,21(4):980-986.(in Chinese)
崔卫岗,高栋,姚英学. 重型数控机床热误差的分离与建模[J]. 哈尔滨工业大学学报,2012,44(9):51-56. CUI W G,GAO D,YAO Y X. Thermal error separating and modeling for heavy duty CNC machine tools[J].Journal of Harbing Institute of Technology,2012,44(9):51-56.(in Chinese)
杨漪,姚国栋,杨建国,等. 基于主成分分析与BP神经网络相结合的机床主轴热漂移误差建模[J]. 上海交通大学学报,2013,47(5):750-754. YANG Y,YAO G D,YANG J G, et al.. Thermo-drifting error modeling of spindle based on combination of principal component analysis and BP neural network[J]. Journal of Shanghai Jiaotong University, 2013,47(5) :750-754.(in Chinese)
郭前建,杨建国,李永祥,等. 聚类回归分析在滚齿机热误差建模中的应用[J]. 上海交通大学学报2008,42(7): 1055-1059. GUO Q J,YANG J G,LI Y X,et al.. Applation of clustering regression analysis to thermal error modeling of gear hobbing machine[J]. Journal of shanghai Jiaotong University. 2008,42(7):1055-1059.(in Chinese)
闫嘉钰,张宏涛,刘国良,等. 基于灰色综合关联度的数控机床热误差测点优化新方法及应用[J]. 四川大学学报:工程科学版,2008. 40(2): 160-164. YAN J Y. ZHANG H T. LIU G L,et al.. Application of a new optimizing method for the measuring points of CNC machine thermal error based on grey systhetic degree of assiociation[J]. Journal of Sichuan University: Engineering Science Edition,2008,40(2):160-164.(in Chinese)
王福吉,贾振元,阳江源,等. 基于动态模糊神经网络的机床时变位定位误差补偿[J]. 机械工程学报,2011,47(13): 175-179. WANG F J,JIA ZH Y, YANG J Y, et al.. Time-varying position error compensation of machine tools based on dynamic fuzzy neural networks[J].Chinese Journal of Mechanical Engineering,2011,47(13):175-179.(in Chinese)
夏毅敏,张刚强,罗松保,等. 非球面超精密机床静压轴承温度的分布[J]. 光学 精密工程,2012,20(8):1759-1761. XIA Y M,ZHANG G Q,LUO S B,et al.. Temperature field distribution of non-spherical hydrostatic bearings for ultra-precision machine tools[J]. Opt. Precision Eng.,2012,20(8):1759-1761. (in Chinese)
罗佑新,张龙庭,李敏. 灰色系统理论及其在机械工程中的应用[M]. 长沙:国防科技大学出版社,2001. RUO Y X,ZHANG L T,LI M,et al.. The Grey System Theory and Its Application in Mechanical Engineering[M]. Changsha: National University of Defense Technology Press,2011. (in Chinese)
0
浏览量
262
下载量
3
CSCD
关联资源
相关文章
相关作者
相关机构