浏览全部资源
扫码关注微信
1. 吉林大学 通信工程学院,吉林 长春,中国,130012
2. 吉林大学 机械科学与工程学院,吉林 长春,130025
3. 大陆汽车电子(长春)有限公司净月分公司,吉林 长春,130023
修回日期:2015-07-13,
纸质出版日期:2015-12-25
移动端阅览
李新波, 付云博, 姜良旭等. 神经网络分数阶PI<sup>μ</sup>D<sup>λ</sup>在压电叠堆控制中的应用[J]. 光学精密工程, 2015,23(12): 3439-3445
LI Xin-bo, FU Yun-bo, JIANG Liang-xu etc. Application of neural network fractional order PI<sup>μ</sup>D<sup>λ</sup> to piezoelectric stack control[J]. Editorial Office of Optics and Precision Engineering, 2015,23(12): 3439-3445
李新波, 付云博, 姜良旭等. 神经网络分数阶PI<sup>μ</sup>D<sup>λ</sup>在压电叠堆控制中的应用[J]. 光学精密工程, 2015,23(12): 3439-3445 DOI: 10.3788/OPE.20152312.3439.
LI Xin-bo, FU Yun-bo, JIANG Liang-xu etc. Application of neural network fractional order PI<sup>μ</sup>D<sup>λ</sup> to piezoelectric stack control[J]. Editorial Office of Optics and Precision Engineering, 2015,23(12): 3439-3445 DOI: 10.3788/OPE.20152312.3439.
为了克服压电叠堆的迟滞特性
实现压电叠堆的精确控制
建立了压电叠堆控制系统
研究了该系统所用到的神经网络、分数阶微积分等算法。首先
搭建了采集压电叠堆位移数据的硬件系统
并对含有噪声的位移数据进行了滤波处理;利用 径向基函数(RBF)神经网络对压电叠堆建模
得到了模型参数。然后
利用RBF神经网络建模得到的Jacobain信息来整定分数阶PI
μ
D
λ
控制器中的参数对压电叠堆进行控制。最后
与RBF整数阶PID对压电叠堆的控制效果进行了对比。结果显示:RBF建模误差仅为位移实测数据的0.22%
RBF神经网络分数阶PI
μ
D
λ
控制系统输出稳定
很好地跟随了给定。得到的结果表明RBF神经网络分数阶PI
μ
D
λ
控制器控制性能良好
在压电叠堆的控制中比RBF整数阶PID控制器表现得更加稳定、精确。
To overcome the hysteresis characteristics of a piezoelectric stack and to control the piezoelectric stack more accurately
a control system for the piezoelectric stack was established and corresponding algorithms such as neural network
fractional order differential and integral calculus were investigated. First
a hardware platform was set up to collect displacement data of the piezoelectric stack and a wavelet algorithm was used to removal noise. The Radial Basis Function(RBF) neural network model of piezoelectric stack was built to obtain model parameters. Then
the Jacobain information obtained by RBF neural network model was used to set controller parameters of a fractional order PI
μ
D
λ
to control the piezoelectric stack. Finally
the comparative work between RBF fractional order PI
μ
D
λ
and traditional RBF integer order PID was performed to demonstrate the effectiveness of the proposed control methodology. The results show that the RBF model error is only 0.22% that of measured displacement data. The output of fractional order PI
μ
D
λ
control system is stable and has a good follow to the input. It concludes that the RBF neural network fractional order PI
μ
D
λ
controller has good control performance
and it is more stable and accurate to RBF integer order PID in the control process of piezoelectric stacks.
杨玥,郑素霞,许忠斌. 微纳米技术在工业装备中的应用研究进展[J]. 轻工机械,2011, 29(4):117-120. YANG Y, ZHENG S X, XU Z B. Application development of the micro- and nano-technology in industrial equipment[J]. Light Industry Machinery, 2011,29(4):117-120. (in Chinese)
陈元晟.压电驱动器的迟滞非线性建模与控制[D]. 南京:南京航空航天大学,2013. CHEN Y SH. Hysteresis Modeling and Nonlinear Control of Piezoelectric Actuators[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2013. (in Chinese)
赖志林,刘向东,陈振,等. 基于Preisach逆模型的压电陶瓷执行器迟滞补偿控制[J]. 北京理工大学学报,2011, 31(4): 447-451. LAI ZH L, LIU X D, CHEN ZH, et al.. The hysteresis compensation control of the piezoceramic actuators based on the inverse Preisach model [J].Transactions of Beijing Institute of Technology, 2011, 31(4): 447-451. (in Chinese)
方凡,崔玉国,梁冬泰,等. 压电微动平台的改进PI迟滞模型研究[J]. 压电与声光,2014, 36(1):69-71,75. FANG F, CUI Y G, LIANG D T,et al.. Research on improved hysteresis model of piezoelectric micro-positioning stage[J]. Piezoelectrics & Acoustooptics, 2014, 36(1):69-71,75. (in Chinese)
冀坤. 基于KP模型的磁控形状记忆合金执行器位移控制方法研究[D]. 吉林:吉林大学,2014. JI K. Control Method Research of Magnetic Control Shape Memory Alloy Actuators Based on KP Model[D]. Jilin:Jilin University, 2014. (in Chinese)
裘进浩,陈海荣,陈运晟,等. 压电驱动器的非对称迟滞模型[J]. 纳米技术与精密工程,2012, 10(3): 189-197. QIU J H,CHEN H R,CHEN Y SH, et al.. A model for asymmetric hysteresis of piezoelectric actuators[J]. Nanotechnology and Precision Engineering, 2012, 10(3):189-197. (in Chinese)
陈辉,谭永红,周杏鹏,等. 压电陶瓷执行器的动态模型辨识与控制[J]. 光学 精密工程,2012, 20(1): 88-95. CHEN H, TAN Y H,ZHOU X P,et al.. Identification and control of dynamic modeling for pizoceramic actuator[J]. Opt. Precision Eng., 2012, 20(1): 88-95. (in Chinese)
张亚超,赵美荣,林玉池. 压电微角度驱动器及其闭环控制检测系统[J]. 压电与声光,2012, 34(3):404-407. ZHANG Y CH, ZHAO M R, LIN Y CH. Piezoelectric micro-angle rotary actuator and close-loop control test system[J]. Piezoelectrics & Acoustooptics, 2012, 34(3):404-407. (in Chinese)
李朋志,闫丰,葛川,等. 压电驱动器的开闭环迭代学习控制[J]. 光学 精密工程,2014, 22(2): 414-419. LI P ZH,YAN F,GE CH, et al.. Open-closed loop iterative learning control of piezoelectric actuators[J]. Opt. Precision Eng., 2014, 22(2): 414-419. (in Chinese)
王耿,宫春林,张小军,等. 应变式微型精密压电驱动器的一体化设计及其PID控制[J]. 光学 精密工程,2013, 21(3): 709-716. WANG G,GONG CH L,ZHANG X J, et al.. Design and control of miniature piezoelectric actuator based on strain gauge sensor[J]. Opt. Precision Eng., 2013, 21(3): 709-716. (in Chinese)
PODLUBNY I.Fractional-order dynamic system and PIμDλ-controllers[J].IEEE Trans on Automatic Control, 1999, 44(1): 208-214.
薛定宇,赵春娜. 分数阶系统的分数阶PID控制器设计[J]. 控制理论与应用,2007, 24(5): 771-776. XUE D Y, ZHAO CH N. Fractional order PID controller design for fractional order system [J]. Control Theory & Applications, 2007, 24(5): 771-776. (in Chinese)
PODLUBNY I, PETRAS I,VINAGRE B M,et al.. Analogue realization of fractional order controllers[J]. Nonlinear Dynamics, 2002,29(1-4):281-296.
OUSTALOUP A, LEVRON F, MATHIEU B, et al.. Frequency band complex non integer differentiator: characterization and synthesis[J]. IEEE Transactions on Circuits and Systems I: Fundamental Theory and applications, 2000, 47(1):25-39.
王春阳. 分数阶PIμDλ控制器参数整定方法与设计研究[D]. 吉林:吉林大学,2013. WANG C Y. Study on Fractional order PIμDλ Controller Parameter Tuning Methods and Design[D]. Jilin:Jilin University, 2013. (in Chinese)
0
浏览量
300
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构