浏览全部资源
扫码关注微信
1. 中国科学院大学 北京,中国,100049
2. 中国科学院 沈阳自动化研究所,辽宁 沈阳,110016
修回日期:2015-06-18,
纸质出版日期:2015-12-25
移动端阅览
肖传民, 史泽林, 刘云鹏. 引入梯度分布特征的图像背景杂波度量[J]. 光学精密工程, 2015,23(12): 3472-3479
XIAO Chuan-min, SHI Ze-lin, LIU Yun-peng. Metrics of image background clutter by introducing gradient features[J]. Editorial Office of Optics and Precision Engineering, 2015,23(12): 3472-3479
肖传民, 史泽林, 刘云鹏. 引入梯度分布特征的图像背景杂波度量[J]. 光学精密工程, 2015,23(12): 3472-3479 DOI: 10.3788/OPE.20152312.3472.
XIAO Chuan-min, SHI Ze-lin, LIU Yun-peng. Metrics of image background clutter by introducing gradient features[J]. Editorial Office of Optics and Precision Engineering, 2015,23(12): 3472-3479 DOI: 10.3788/OPE.20152312.3472.
为提高图像背景杂波度量法对目标获取性能的预测精度
本文基于人眼视觉对物体边缘敏感的视觉特性
将区域梯度分布作为新的结构特征
提出了引入梯度分布特征的图像背景杂波度量法。首先
采用梯度方向直方图表征目标结构特征
选用巴氏系数度量图像目标和背景杂波在两个梯度方向直方图的相似性 ;然后
将基于图像结构相似性度量方法得到的结构相似性信息进行加权;最后采用D.L.Wilson提出的目标获取性能模型作为目标探测概率、虚警概率和搜索时间的预测模型对Search_2 数据库中的目标进行了获取性能预测。结果显示
提出的图像杂波度量法提高了目标获取性能模型的预测精度
得到的线性相关系数分别为0.870、0.845、0.897
均方根误差分别为0.0569、0.0469、2.129
与实际观察者获得的一致性较高
且没有明显的野点
预测性能明显优于现有其他杂波度量方法。
To improve the metric precision of image background clutter for target acquisition performance
a metric method of image background clutter by introducing gradient features is proposed in this paper. The method is based on the visual properties of the human eyes sensitive to edges and regards the regional gradient distribution as a new structural characteristic. Firstly
the gradient direction histogram is used to represent goal structure characteristics and the Pap coefficients are selected for measuring the similarity between the image target and the background clutter gradient direction histogram. Then the structure similarity information is weighted with image structure similarity metrics. Finally
the D.L.Wilson target acquisition performance model is taken as prediction models for predicting the target detection probability
false alarm probability and search time to predict the target acquisition performance of the Search-2 database. The results show that the proposed metric method of image background clutter by introducing gradient feature has improved metric precision of prediction models
the linear correlation coefficients are 0.870
0.845
0.897 and root mean square errors are 0.056 9
0.046 9
2.129
respectively. These data means that the predicted results and the actual observer have good consistency
and the target acquisition performance is superior to those of other methods.
SCHMIEDER D E, WESTHERSBY M R Detection performance in clutter with variable resolution [J]. IEEE Transactions on Aerospace and Electronic Systems, 1983,19(4):622-630.
ROTMAN S R, COHEN A, SHAMAY D,et al.. Textural metrics for clutter affecting human target acquisition [J]. Infrared Physics & Technology, 1996,37(6):667-674.
AVIRAM G, ROTMAM S R. Evaluation of human detection performance of targets embedded in natural and enhanced infrared images using image metrics [J]. Opt. Eng., 2000, 39(4):885-896.
CHANG H H, ZHANG J Q. New metrics for clutter affecting human target acquisition[J].IEEE Transactions on Aerospace and Electronic Systems,2006,42(1):361- 368.
WANG Z, BOVIK A C,SHEIKH H R,et al.. Image quality assessment: from error visibility to structure similarity [J]. IEEE Transactions on Image Processing,2004,13(4):600-612.
徐德江,史泽林,罗海波. 利用人眼视觉特性的图像结构差异性杂波度量[J]. 红外与激光工程,2013,42(6):1635-1641. XU D J, SHI Z L, LUO H B. Image structural difference clutter metric based on human visual properties [J]. Infrared and Laser Engineering, 2013, 42(6):1635-1641. (in Chinese)
KOCH C, ULLMAN S. Shifts in selective visual attention:towards the underlying neural circuitry [J]. Human Neurobiology, 1985, 4: 219-227.
XU D J, SHI Z L. DSIM: A dissimilarity-based image clutter metric for targeting performance [J]. IEEE Transactions On Image Processing, 2013, 22(10): 4108-4122.
TRIVEDI M M, SHIRVAIKAR M V. Quantitative characterization of image clutter: problem, progress and promises [J]. Characterization,Propagation,and Simulation of Sources and Backgrounds Ⅱ,1993,1967:288-299.
CHANG H H, ZHANG J Q. Detection probability and detection time using clutter metrics [J]. Infrared Physics & Technology, 2007,51(2):83-90.
CHANG H H, ZHANG J Q, LIU D L. Modeling human false alarms using clutter metrics [J]. MIPPR 2007:Automatic Target Recognition and Image Analysis,and Multi-Spectral Image Acquisition,2007,6786:N7863.
LI Q, YANG C, ZHANG J Q. Target acquisition performance in a cluttered environment [J]. Applied Optics, 2012, 51(31): 7668-7673.
李倩,张建奇,杨翠. 边缘结构背景杂波尺度[J]. 西安电子科技大学学报, 2012, 39(3): 95-100. LI Q, ZHANG J Q, YANG C. Structure of the edge background clutter metric [J]. Journal of Xidian University, 2012, 39(3): 95-100. (in Chinese)
DALAL NAMEET, TRIGGS BILL. Histograms of oriented gradients for human detection [C]. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, San Diego, 2005: 886- 893.
马如奇,王伟东,董为,等. 基于改进梯度投影算法的腹腔微创外科手术机器人系统术前摆位分析[J]. 机器人,2014,36(2):156-163. (in Chinese) MA R Q, WANG W D, DONG W,et al.. Preoperative positioning analysis of the celiac minimally invasive surgery robotic system based on an improved gradient projection algorithm [J]. ROBOT,2014,36(2):156-163.(in Chinese)
潘锋,闫贝贝,肖文,等. 基于数学形态学的数字全息再现像融合方法[J]. 中国光学,2015,8(1): 60-67. PAN F, YAN B B, XIAO W, et al.. Digital holographic reconstruction image fusion based on mathematical morphology [J]. Chinese Optics,2015, 8(1):60-67. (in Chinese)
孙晓燕,常发亮. 梯度特征稀疏表示目标跟踪[J]. 光学 精密工程,2013,21(12):3191-3197. SUN X Y, CHANG F L. Object tracking based on sparse representation of gradient feature [J]. Opt. Precision Eng.,2013,21(12):3191-3197. (in Chinese)
高文,朱明,贺柏根,等. 目标跟踪技术综述[J]. 中国光学,2014,7(3): 365-375. GAO W, ZHU M, HE B G,et al.. Overview of target tracking technology [J]. Chinese Optics,2014,7(3): 365-375. (in Chinese)
赵文达,续志军,赵建. 基于梯度直方图变换增强红外图像的细节[J]. 光学 精密工程,2014,22(7):1962-1968. ZHAO W D, XU ZH J, ZHAO J. Enhancement of infrared image details based on gradient histogram transform [J]. Opt. Precision Eng., 2014,22(7):1962-1968. (in Chinese)
肖传民, 史泽林, 夏仁波. 一种基于视觉显著性的边缘检测算法[J]. 信息与控制, 2014, 43(1): 9-13. XIAO CH M, SHI Z L, XIA R B. An edge detection algorithm based on visual saliency [J]. Information and Control, 2014, 43(1): 9-13. (in Chinese)
杨桄,童涛,陆松岩. 基于多特征的红外与可见光图像融合[J]. 光学 精密工程,2014,22(2):489-496. YANG G, TONG T, LU S Y. Fusion of infrared and visible images based on multi-features [J]. Opt. Precision Eng., 2014,22(2):489-496. (in Chinese)
ALEXANDER TOET. Structural similarity determines search time and detection probability [J]. Infrared Physics & Technology, 2010,53(6):464-468.
WILSON D L. Image-based contrast-to-clutter modeling of detection [J]. Opt. Eng.,2001,40(9):1852-1857.
0
浏览量
371
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构