浏览全部资源
扫码关注微信
上海大学 精密机械工程系 上海,200072
收稿日期:2015-05-11,
修回日期:2015-05-31,
纸质出版日期:2015-11-14
移动端阅览
刘贝贝, 于瀛洁, 伍小燕等. 基于光强传输方程的相位恢复条件[J]. 光学精密工程, 2015,23(10z): 77-84
LIU Bei-bei, YU Ying-jie, WU Xiao-yan etc. Applicable conditions of phase retrieval based on transport of intensity equation[J]. Editorial Office of Optics and Precision Engineering, 2015,23(10z): 77-84
刘贝贝, 于瀛洁, 伍小燕等. 基于光强传输方程的相位恢复条件[J]. 光学精密工程, 2015,23(10z): 77-84 DOI: 10.3788/OPE.20152313.0076.
LIU Bei-bei, YU Ying-jie, WU Xiao-yan etc. Applicable conditions of phase retrieval based on transport of intensity equation[J]. Editorial Office of Optics and Precision Engineering, 2015,23(10z): 77-84 DOI: 10.3788/OPE.20152313.0076.
由于基于光强传输方程的相位恢复技术对照明方式、记录系统和样本有一定的选择性
本文通过理论分析和数值模拟分析了光强传输方程相位恢复的适用条件
并通过实验验证了适用条件的有效性。分析认为相位恢复技术需满足照明光的广义相位为常数;记录系统为远心光路结构;样本为光通过时强度变化较小的物体。利用4
f
记录系统和无限远校正光学显微镜系统对微刻玻璃样本进行了验证实验。结果显示:
4f
系统恢复的微刻玻璃样本的平均深度为1.41 μm
与激光共聚焦显微镜的测量结果1.59 μm偏差较大;显微镜系统恢复的微刻玻璃样本的平均深度为1.56 μm
与激光共聚焦显微镜的测量结果1.59 μm比较吻合。实验证明
4
f
记录系统和无限远校正光学显微镜系统可以有效恢复出物体的相位
且显微镜系统恢复的相位质量更高。
As phase retrieval based on the Transport of Intensity Equation (TIE) is selective about lighting
recording systems and samples. This paper analyzes the applicable conditions of phase retrieval based on the TIE through theoretical analysis and numerical simulation
and verifies the effectiveness of the applicable conditions. It points out that the phase retrieval is suitable for objects with little intensity variation especially. The generalized phase of the light need to be a constant. and the recording systems are of infinity optical structure. Two experiments are conducted in a 4
f
system and an infinity optical microscope system for a micro-engraved glass sample. The results show that recovered average depth of the 4
f
recording system is 1.41 μm and that of the infinity optical microscope system is 1.56 μm. The result of the infinity optical microscope system is very close to that of the laser scanning confocal microscope. It concludes that the phase of the object can be effectively recovered by the 4
f
recording system and the infinity optical microscope system
and the phase retrieval accuracy of the microscope system is higher.
张敏, 隋永新, 杨怀江. 用于子孔径拼接干涉系统的机械误差补偿算法[J]. 光学 精密工程,2015, 23(4): 934-940. ZHANG M, SUI Y X, YANG H J. Mechanical error compensation algorithm for subaperture stitching interferometry[J]. Opt. Precision Eng., 2015, 23(4): 934-940. (in Chinese)
周文静. 数字全息相位再现误差分析及抑制技术[J]. 光学 精密工程,2008,16(5):899-906. ZHOU W J. Aberration and its reduction of phase reconstructed via digital holography[J]. Opt. Precision Eng., 2008, 16(5): 899-906. (in Chinese)
李国栋,韦春龙,于瀛洁,等. 圆形域干涉图中的相位解包裹[J]. 光学 精密工程,2000,8(5): 473-477. LI G D, WEI CH L, YU Y J, et al.. Phase-unwrapping for interferograms with circle field[J]. Opt. Precision Eng., 2000,8(5): 473-477. (in Chinese)
GERCHBERG R W. A practical algorithm for the determination of phase from image and diffraction plane pictures[J]. Optik, 1972, 35: 237.
FIENUP J R. Phase retrieval algorithms: a comparison[J]. Applied Optics, 1982, 21(15): 2758-2769.
YANG G, DONG B, GU B, et al.. Gerchberg-Saxton and Yang-Gu algorithms for phase retrieval in a nonunitary transform system: a comparison[J]. Applied Optics, 1994, 33(2): 209-218.
REED T M. Deterministic phase retrieval: a Green's function solution[J]. JOSA, 1983, 73(11): 1434-1441.
STREIBL N. Phase imaging by the transport equation of intensity[J]. Optics Communications, 1984, 49(1): 6-10.
XUE B, ZHENG S. Phase retrieval using the transport of intensity equation solved by the FMG-CG method[J]. Optik-International Journal for Light and Electron Optics, 2011, 122(23): 2101-2106.
ICHIKAWA K, LOHMANN A W, TAKEDA M. Phase retrieval based on the irradiance transport equation and the Fourier transform method: experiments[J]. Applied Optics, 1988, 27(16): 3433-3436.
GUREYEV T E, ROBERTS A, NUGENT K A. Phase retrieval with the transport-of-intensity equation: matrix solution with use of Zernike polynomials[J]. JOSA A, 1995, 12(9): 1932-1942.
PETRUCCELLI J C, TIAN L, BARBASTATHIS G. The transport of intensity equation for optical path length recovery using partially coherent illumination[J]. Optics Express, 2013, 21(12): 14430-14441.
程鸿. 基于强度测量的确定性相位检索[D].安徽:安徽大学, 2012. CHENG H. Study on Deterministic Phase Retrieval Based on the Intensity Measurement[D]. Anhui: Anhui University, 2012. (in Chinese)
陶少杰. 基于强度传输方程的相位恢复算法研究[D].安徽:安徽大学, 2013. TAO SH J. On Phase Retrieval Algorithm Based on Transport of Intensity Equation[D]. Anhui: Anhui University, 2013. (in Chinese)
ZUO C, CHEN Q, QU W,et al.. Noninterferometric single-shot quantitative phase microscopy[J]. Optics Letters, 2013, 38(18): 3538-3541.
BASTIAANS M J. Application of the Wigner distribution function to partially coherent light[J]. JOSA A, 1986, 3(8): 1227-1238.
SEMICHAEVSKY A, TESTORF M. Phase-space interpretation of deterministic phase retrieval[J]. JOSA A, 2004, 21(11): 2173-2179.
ZUO C, CHEN Q, HUANG L, et al.. Phase discrepancy analysis and compensation for fast Fourier transform based solution of the transport of intensity equation[J]. Optics Express, 2014, 22(14): 17172-17186.
DORRER C, ZUEGEL J D. Optical testing using the transport-of-intensity equation[J]. Optics Express, 2007, 15(12): 7165-7175.
MARTINEZ-CARRANZA J, FALAGGIS K, KOZACKI T. Optimum measurement criteria for the axial derivative intensity used in transport of intensity-equation-based solvers[J]. Optics Letters, 2014, 39(2): 182-185.
0
浏览量
468
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构