浏览全部资源
扫码关注微信
大连海事大学 信息科学技术学院,辽宁 大连,116026
收稿日期:2015-05-12,
修回日期:2015-06-03,
纸质出版日期:2015-11-14
移动端阅览
王旭东, 冯海燕, 吴楠等. 并行翻转-正交频分复用调光控制室内可见光通信系统[J]. 光学精密工程, 2015,23(10z): 85-91
WANG Xu-dong, FENG Hai-yan, WU Nan etc. PF-OFDM dimming control for indoor visible light communication systems[J]. Editorial Office of Optics and Precision Engineering, 2015,23(10z): 85-91
王旭东, 冯海燕, 吴楠等. 并行翻转-正交频分复用调光控制室内可见光通信系统[J]. 光学精密工程, 2015,23(10z): 85-91 DOI: 10.3788/OPE.20152313.0084.
WANG Xu-dong, FENG Hai-yan, WU Nan etc. PF-OFDM dimming control for indoor visible light communication systems[J]. Editorial Office of Optics and Precision Engineering, 2015,23(10z): 85-91 DOI: 10.3788/OPE.20152313.0084.
由于室内可见光通信系统不仅需要高速可靠的数据传输链路还需要高质量的照明条件
本文基于脉冲宽度调制(PWM)调光控制技术及可见光频分复用(OFDM)系统工作原理
对并行翻转(Parallel Flip)-OFDM(PF-OFDM)室内可见光高速通信系统的调光控制进行了研究。介绍了PF-OFDM的原理
验证了其功率效率、频谱利用率、误码性能的良好折中能力。然后将其应用到调光控制中
对其调光性能进行了分析比较。实验结果表明
在16QAM调制下
PF-OFDM室内可见光通信系统的调光控制在达到直流偏置光-OFDM(DCO-OFDM)系统频谱利用率的同时
调光范围略优于该系统
误码性能提高了3 dB。实验结果表明:本文提出的调光控制方法在不牺牲照明质量的同时具有更好的频带利用率和误码性能。
To achieve reliable high-speed data transmission and high quality lighting for an indoor Visible Light Communication (VLC)
a new indoor visible light high-speed communication dimming control scheme was proposed based on a Pulse Width Modulation (PWM) technique and an Optical Orthogonal Frequency Division Multiplexing (O-OFDM). First
the working principle of Parallel Flip OFDM(PF-OFDM) was introduced and its good compromise performance in power efficiency
spectral efficiency and bit error rate were verified. Then the dimming performance of PF-OFDM system with the PWM technique was adopted and analyzed. Experimental results indicate that the spectral efficiency of the proposed dimming control scheme approximates the DC-biased optical OFDM(DCO-OFDM) system
the dimming range is slightly better than that of the DCO-OFDM system and the Bit Error Ratio(BER) has improved by 3 dB for 16QAM. Therefore
PF-OFDM dimming control scheme obtains better spectral efficiency and BER performance in the mean time without sacrificing illumination quality.
RANDEL S, BREYER F, LEE S C J, et al.. Advanced modulation schemes for short-range optical communications[J]. IEEE J. Sel. Top. Quantum Electron., 2010, 16(5): 1280-1289.
ELGALA H, MESLEH R, HAAS H. Indoor optical wireless communication: potential and state-of-the-art[J]. IEEE Communications Magazine, 2011, 49(9): 56-62.
KOMINE T, NAKAGAWA M. Performance evaluation of visible-light wireless communication system using white LED lighting[C]. The Ninth IEEE International Symposium on Computers and Communications (ISCC 04), Alexandria, 2004, 1: 258-263.
IEEE Standard Association. IEEE Standard for Local and Metropolitan Area Networks——Part 15.7: Short-Range Wireless Optical Communication Using Visible Light[S]. IEEE-SA Standards Board, 2011: 1-309.
RAJAGOPAL S, ROBERTS R D, LIM S K. IEEE 802.15.7 visible light communication: modulation schemes and dimming support[J]. IEEE Communications Magazine, 2012, 50(3): 72-82.
ARMSTRONG J. OFDM for optical communications[J]. Journal of Lightwave Technology, 2009, 27(3): 189-204.
DISSANAYAKE S D, ARMSTRONG J. Comparison of ACO-OFDM, DCO-OFDM and ADO-OFDM in IM/DD systems[J]. Journal of Lightwave Technology, 2013, 31(7): 1063-1072.
ARMSTRONG J, LOWERY A J. Power efficient optical OFDM[J]. Electronics Letters, 2006, 2(6): 370-372.
MOHAMED S D. ANDONOVIC I, SHALABY H, et al.. Modified asymmetrically-clipped optical orthogonal frequency-division multiplexing system performance[C]. IEEE Photonics Conference (IPC 2013),Bellevue,2013: 289-290.
FERNANDO N, HONG Y, VITERBO E. Flip-OFDM for optical wireless communications[C]. Information Theory Workshop (ITW), Paraty, 2011: 5-9.
TSONEV D, SINANOVIC S, HAAS H. Novel unipolar orthogonal frequency division multiplexing (U-OFDM) for optical wireless[C]. IEEE 75th Vehicular Technology Conference(VTC 2012 Spring), Yokohama, 2012: 1-5.
TSONEV D, HAAS H. Avoiding spectral efficiency loss in unipolar OFDM for optical wireless communication[C]. IEEE International Conference on Communications (ICC 2014), Sydney, 2014: 3336-3341.
GANCARZ J, ELGALA H, LITTLE T D C. Impact of lighting requirements on VLC systems [J]. IEEE Communications Magazine, 2013, 51(12): 34-41.
APSE-APSITIS P, AVOTINS A, RIBICKIS L. Wirelessly controlled LED lighting system[C]. 2nd IEEE Energy Conference & Exhibition, Florance, 2012: 952-956.
CHOI J H, CHO E, KANG T, et al.. Pulse width modulation based signal format for visible light communications[C]. OptoElectronics and Communications Conference (OECC 2010), Sapporo, 2010: 276-277.
ELGALA H, LITTLE T D C. Reverse Polarity Optical-OFDM (RPO-OFDM): dimming compatible OFDM for gigabit VLC links[J]. Optics Express, 2013, 21(20): 24288-24299.
STEFAN I, ELGALA H, HAAS H. Study of dimming and LED nonlinearity for ACO-OFDM based VLC systems[C]. Wireless Communications and Networking Conference (WCNC), Paris, 2012: 990-994.
DYBLE M, NARENDRAN N, BIERMAN A, et al.. Impact of dimming white LEDs: chromaticity shifts due to different dimming methods[J]. SPIE, 2005,5941: 291-299.
LOO K, LAI Y, TAN S, et al.. On the color stability of phosphor-converted white LEDs under DC, PWM, and Bi-Level drive[J]. IEEE Transactions on Power Electronics, 2012, 27(2): 974-984.
WANG Z, ZHONG W D, YU C, et al.. Performance of dimming control scheme in visible light communication system[J]. Opt. Express, 2012, 20(17): 18861-18868.
0
浏览量
468
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构