浏览全部资源
扫码关注微信
重庆理工大学 现代光电检测与仪器重庆市重点实验室 重庆,400054
收稿日期:2015-06-16,
修回日期:2015-07-08,
纸质出版日期:2015-11-14
移动端阅览
刘洋, 钟年丙, 陈明等. 准确测量微藻生物量的塑料光纤倏逝波传感器[J]. 光学精密工程, 2015,23(10z): 151-158
LIU Yang, ZHONG Nian-bing, CHEN Ming etc. Plastic optical fiber evanescent wave sensor for accurate measurement of microalgae biomass[J]. Editorial Office of Optics and Precision Engineering, 2015,23(10z): 151-158
刘洋, 钟年丙, 陈明等. 准确测量微藻生物量的塑料光纤倏逝波传感器[J]. 光学精密工程, 2015,23(10z): 151-158 DOI: 10.3788/OPE.20152313.0150.
LIU Yang, ZHONG Nian-bing, CHEN Ming etc. Plastic optical fiber evanescent wave sensor for accurate measurement of microalgae biomass[J]. Editorial Office of Optics and Precision Engineering, 2015,23(10z): 151-158 DOI: 10.3788/OPE.20152313.0150.
为了准确测量微藻生物量
研制了新型倏逝波传感器。首先
采用研磨法制备了两根D形光纤
对D形区域进行升温-降温循环水浴处理后
将处理后的D形光纤制备成U形;然后
将其中一根U形光纤标记为传感器传感臂
用于测量藻液中细胞和液相变化信息;在另一根U形光纤表面包裹一层混合纤维素酯多孔微藻滤膜并标记为传感器参考臂
用于测量藻液中液相变化信息;最后
利用传感臂和参考臂构成双探针U形塑料光纤倏逝波生物量传感器。建立了传感器测量理论模型
测试了传感器性能参数及对生物量的响应特性。研究表明:传感器输出信号不受藻液中液相浓度及成分变化的影响
只与微藻生物量有关。该传感器能准确测量低浓度和高浓度微藻生物量
对于生物量为0~598.998 mg/L及吸光度(OD
680 nm
)为0~2.986的蛋白核小球藻
传感器测量值与拟合值之间的最大相对误差为2.46%
相对误差均值为1.28%。
A plastic optical fiber sensor with double U-shaped probes (i.e. the sensor and reference probes) was created to accurately measure microalgae biomass. Firstly
two D-shaped fibers were created by a grinding method. The D-shaped fibers were subjected to numerous rounds of heating-cooling treatment to obtain U-shaped ones. One of the prepared U-shaped fibers was employed as the sensing probe and to sense the algal cells and changes in the liquid-phase (concentration and composition)
and the other prepared U-shaped fiber coated with a hydrophilic mixed cellulose ester membrane was used as the reference probe to separate the liquids from the cells and to measure the liquid concentration and composition. Furthermore
the plastic optical fiber sensor with double U-shaped probes was implemented based on the sensing probe and the reference probe. A theoretical model was established to examine the performance parameters of the probes and the response properties of the sensor for the microalgae biomass. The measuring results show that the output signal of the prepared sensor is a function of the biomass and is not affected by changes in the liquid-phase composition or concentration.The developed sensor can accurately measure the low and high level biomasses. When the biomass of the chlorella pyrenoidosa in the range of 0-598.998 mg/L (the absorbance at OD680 nm in the range of 0-2.986)
the maximum relative error between the fitted curve and the experiment results is 2.46%
and the relative error mean is 1.28%.
BARROS A I, GONÇALVES A L, SIMÕES M, et al.. Harvesting techniques applied to microalgae: A review [J]. Renewable and Sustainable Energy Reviews, 2015, 41: 1489-1500.
RITTMANN B E. Opportunities for renewable bioenergy using microorganisms [J]. Biotechnology and Bioengineering, 2008, 100(2): 203-212.
RUMPEL S, SIEBEL J F, FARÈS C, et al.. Enhancing hydrogen production of microalgae by redirecting electrons from photosystem I to hydrogenase [J]. Energy & Environmental Science, 2014, 7(10): 3296-3301.
BRILMAN W, GARCIA A L, VENEMAN R. Capturing atmospheric CO2 using supported amine sorbents for microalgae cultivation [J]. Biomass and Bioenergy, 2013, 53: 39-47.
AHMAD A L, YASIN N H M, DEREK C J C. et al.. Microalgae as a sustainable energy source for biodiesel production: a review [J]. Renewable and Sustainable Energy Reviews, 2011, 15(1): 584-593.
LUCHTERHAND B, NOLTEN J, HAFIZOVIC S, et al.. Newly designed and validated impedance spectroscopy setup in microtiter plates successfully monitors viable biomass online [J]. Biotechnology Journal, 2015,10(8):1259-1268.
HEILEMAN K, DAOUD J, TABRIZIAN M. Dielectric spectroscopy as a viable biosensing tool for cell and tissue characterization and analysis [J]. Biosensors and Bioelectronics, 2013, 49(15):348-359.
ZHONG N B, LIAO Q, ZHU X, et al.. Fiber Bragg grating with polyimide-silica hybrid membrane for accurately monitoring cell growth and temperature in a photobioreactor [J]. Analytical Chemistry, 2014, 86(18): 9278-9285.
赵明富,钟年丙,罗彬彬,等. 用于生物量浓度在线检测的光纤衰减全反射传感器[J]. 光学 精密工程 , 2010,18(8):1707-1714. ZHAO M F, ZHONG N B, LUO B B, et al.. Optical fiber attenuated total reflection sensor for on-line measurement of biomass concentration [J]. Opt. Precision Eng., 2010, 18(8):1707-1714. (in Chinese)
ZIBAII M I, KAZEMI A, LATIFI H, et al.. Measuring bacterial growth by refractive index tapered fiber optic biosensor [J]. Journal of Photochemistry and Photobiology B: Biology, 2010, 101(3):313-320.
GARITO A F, WANG J, GAO R. Effects of random perturbations in plastic optical fibers [J]. Science, 1998, 281(5379): 962-967.
KOIKE Y, ASAI M. The future of plastic optical fiber [J]. NPG Asia Materials, 2009, 1(1): 22-28.
MIZUNO Y, HAYASHI N, TANAKA H, et al.. Propagation mechanism of polymer optical fiber fuse [J]. Scientific Reports, 2014, 4:1-4.
ZHONG N B, LIAO Q, ZHU X, et al.. Temperature-independent polymer optical fiber evanescent wave sensor [J]. Scientific Reports, 2015, 5:11508.
ZHONG N B, LIAO Q, ZHU X, et al.. Fiber-optic differential absorption sensor for accurately monitoring biomass in a photobioreactor [J]. Applied Optics, 2015, 54(2): 228-235.
夏建荣,高坤山. 不同CO2浓度下培养的蛋白核小球藻细胞结构的变化[J]. 武汉植物学研究, 2002, 20 (5): 403-404. XIA J R, GAO K SH. Change of cell structure of chlorella pyrenoidosa grown under different CO2 concentration [J]. Journal of Wuhan Botanical Research, 2002, 20 (5): 403-404. (in Chinese)
KOVAČEVIC Ć M S, SAVOVIC Ó S, DJORDJEVICH A, et al.. Measurements of growth and decay of radiation induced attenuation during the irradiation and recovery of plastic optical fibres [J]. Optics and Laser Technology, 2013, 47:148-151.
DAI X H, HE J, LIU Z, et al.. Stability of high-bandwidth graded-index polymer optical fiber [J]. Journal of Applied Polymer Science, 2004, 91: 2330-2334.
ZHONG N B, ZHU X, LIAO Q, et al.. Effects of surface roughness on optical properties and sensitivity of fiber-optic evanescent wave sensors [J]. Applied Optics, 2013, 52 (17):3937-3945.
MULLER-FEUGA A, LE GUÉDES R, HERVÉ A, et al.. Comparison of artificial light photobioreactors and other production systems using Porphyridium cruentum [J]. Journal of Applied Phycology, 1998, 10(1): 83-90.
0
浏览量
942
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构