浏览全部资源
扫码关注微信
中国科学院 长春光学精密机械与物理研究所,吉林 长春,中国,130033
[ "崔聪聪(1987-),男,河北保定人,硕士,研究实习员,2010年,2012年于哈尔滨工业大学分别获得学士、硕士学位,主要从事大尺寸SiC陶瓷烧结方面的研究。E-mail:cuicongconghit@126.com" ]
[ "张舸(1980-),男,重庆荣昌人,博士,副研究员,2003年于长春理工大学获得学士学位,2008年于中国科学院长春光学机密机械与物理研究所获得博士学位,主要从事轻型碳化硅反射镜制备技术的研究。E-mail:zhanggeciomp@126.com" ]
收稿日期:2015-06-17,
修回日期:2015-06-29,
纸质出版日期:2015-11-14
移动端阅览
崔聪聪, 张舸,. 前驱体浸渍对反应烧结碳化硅性能的影响[J]. 光学精密工程, 2015,23(10z): 185-190
CUI Cong-cong, ZHANG Ge,. Effects of precursor impregnation on mechanical properties of reactive bonded silicon carbide[J]. Editorial Office of Optics and Precision Engineering, 2015,23(10z): 185-190
崔聪聪, 张舸,. 前驱体浸渍对反应烧结碳化硅性能的影响[J]. 光学精密工程, 2015,23(10z): 185-190 DOI: 10.3788/OPE.20152313.0184.
CUI Cong-cong, ZHANG Ge,. Effects of precursor impregnation on mechanical properties of reactive bonded silicon carbide[J]. Editorial Office of Optics and Precision Engineering, 2015,23(10z): 185-190 DOI: 10.3788/OPE.20152313.0184.
为了提高凝胶注模反应烧结碳化硅的综合性能
选用糠醇为前驱体
对高温脱脂后多孔状态的坯体进行前驱体浸渍处理
以期通过提高反应烧结后坯体中的碳化硅含量来提升其性能。研究了浸渍处理对碳化硅密度以及微观结构的影响。结果显示:未经浸渍处理的样品平均密度为2.93 g/cm
3
折合碳化硅含量(体积分数)为68.2%;经糠醇浸渍处理后的样品平均密度为3.06 g/cm
3
折合碳化硅含量(体积分数)为83.0%
碳化硅含量增加了21.7%。由糠醇热解碳生成的β-SiC尺寸细小
在光学显微镜下形貌与原来的α-SiC难以区分
但在坯体中的分布并不均匀。对样品进行了性能测试
结果显示:经糠醇浸渍处理后
坯体平均抗弯强度从343.3 MPa提高到382.0 MPa
增幅为11.3%;平均弹性模量从303.5 GPa提高到353.8 GPa
增幅为16.6%。得到的数据表明反应烧结碳化硅各方面性能均有不同程度的提高。
To improve the mechanical properties of the gel-casting reactive bonded silicon carbide
furfuryl alcohol was selected as the precursor
and the porous state green body after degreasing at high temperature was processed by precursor impregnation. It is expected to improve the performance of the silicon carbide by improving its content in the body after reaction sintered. The density and the microstructure after the impregnation process were investigated. The results show that the average density of the sample without impregnation process is 2.93 g/cm
3
after reaction sintered
namely the silicon carbide content is 68.2%. The average density increases to 3.06 g/cm
3
after impregnation
namely the silicon carbide content is 83.0%. The silicon carbide content increases by 21.7%. The scale of β-SiC generated by furfuryl alcohol pyrolytic carbon is fine. Under the light microscope
the appearance of β-SiC is difficult to distinguish from the original α-SiC
but the distribution of β-SiC is not uniform in the body. A performance test was conducted with the samples. It shows that the average flexure strength has increased from 343.3 MPa to 382.0 MPa after impregnation
and strength increased by 11.3%. The average elastic modulus has increased from 303.5 GPa to 353.8 GPa after impregnation
the elastic modulus increased by 16.6%. These data indicate that the mechanical properties of the silicon carbide have been improved in varying degrees.
宣明,王家骐. 长春光机所航天光学遥感器研制基地建设进展[J]. 中国光学, 2015, 8(1): 1-16. XUAN M, WANG J Q. Current status of space remote sensing equipments research base in CIOMP [J]. Chinese Optics, 2015, 8(1): 1-16. (in Chinese)
ZHANG ZH W, WANG B, GONG H, et al.. Research on materials for the large aperture space mirror [J]. SPIE, 2014, 9298: 929818.
闫勇,金光 .RB-SiC反射镜的材料制备、表面改性及非球面加工[J]. 光学 精密工程, 2011, 19(8): 1750-1756. YAN Y, JIN G. Material preparation, surface modification and aspheric processing of RB-SiC mirrors[J]. Opt. Precision Eng., 2011, 19(8): 1750-1756. (in Chinese)
SCHWARTZ E, REY J, BLASZAK D, et al.. An approach to fabrication of large adaptive optics mirrors [J]. SPIE, 2014, 9151: 915108.
张舸. 1.5 m量级SiC陶瓷素坯凝胶注模成型工艺[J]. 光学 精密工程, 2013, 21(12): 2989-2993. ZHANG G. Gelcasting process of 1.5 m SiC ceramic green body [J]. Opt. Precision Eng., 2013, 21(12): 2989-2993. (in Chinese)
ZHANG J H, ZHANG Y M, HAN J C, et al.. Design and fabrication of large-scale lightweight SiC space mirror [J]. SPIE, 2006, 6148: 61480U1-61480U6.
HUANG Z R, LIU G L, LIU X J, et al.. Manufacture of large-scale lightweight SiC mirror for space [J]. SPIE,2012,8335: 83351R.
ZHANG C, QIU T, YANG J, et al..The effect of solid volume fraction on properties of ZTA composites by gelcasting using DMAA system[J]. Materials Science & Engineering: A, 2012, 539: 243-249.
HE R, ZHANG X, HAN W, et al.. Effects of solids loading on microstructure and mechanical properties of HfB2-20vol.% MoSi2 ultra high temperature ceramic composites through aqueous gelcasting route[J]. Materials & Design, 2013, 47: 35-40.
MOON J, CABALLERO A C, HOZER L,et al..Fabrication of functionally graded reaction infiltrated SiC-Si composite by three-dimensional printing (3DP) process[J]. Materials Science & Engineering: A,2001, 298: 110-119.
张秀芳,曹顺华,邹仕民,等. 反应烧结SiC陶瓷的研究进展[J]. 粉末冶金工业, 2008, 18(5): 48-53. ZHANG X F, CAO SH H, ZOU SH M, et al.. Progress in research of reaction bonded silicon carbide ceramics[J]. Powder Metallurgy Industry, 2008, 18(5):48-53. (in Chinese)
李绍纯,戴长虹. 碳化硅颗粒、晶须、晶片增韧陶瓷复合材料的研究现状[J]. 硅酸盐通报, 2004, 6: 63-65 LI SH CH,DAI CH H. Status of the SiC papticle, whisker and platelet toughened ceramic composite[J]. Bulletin of the Chinese Ceramic Society, 2004,6:63-65. (in Chinese)
SUYAMA S, KAMEDA T, ITOH Y. Development of high-strength reaction-sintered silicon carbide [J]. Diamond and Related Materials, 2003,12(3-7):1201-1204.
0
浏览量
453
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构