浏览全部资源
扫码关注微信
吉林大学 电子科学与工程学院 集成光电子学国家重点联合实验室,吉林 长春,130012
收稿日期:2015-06-15,
修回日期:2015-06-30,
纸质出版日期:2015-11-14
移动端阅览
孔庆楠, 王善德, 张驰等. 激光散斑平均尺寸对关联成像重构的影响[J]. 光学精密工程, 2015,23(10z): 198-204
KONG Qing-nan, WANG Shan-de, ZHANG Chi etc. Influence of laser speckle average size on ghost imaging[J]. Editorial Office of Optics and Precision Engineering, 2015,23(10z): 198-204
孔庆楠, 王善德, 张驰等. 激光散斑平均尺寸对关联成像重构的影响[J]. 光学精密工程, 2015,23(10z): 198-204 DOI: 10.3788/OPE.20152313.0197.
KONG Qing-nan, WANG Shan-de, ZHANG Chi etc. Influence of laser speckle average size on ghost imaging[J]. Editorial Office of Optics and Precision Engineering, 2015,23(10z): 198-204 DOI: 10.3788/OPE.20152313.0197.
研究了散斑平均尺寸对赝热光关联成像的影响。分别采用1幅二值图和1幅多灰度图作为待重构目标物体的图像
以峰值信噪比(PSNR)作为衡量指标
对重构质量进行了量化
同时从小到大选取3组不同尺寸散斑重构的图像进行了直观的对比。通过仿真实现了传统关联成像(GI)、差分关联成像(DGI)、基于压缩感知的关联成像(CGI)和基于伪逆的关联成像(PGI)4种关联成像方案。使用尺寸从小到大的多组散斑场分别对每一种方案进行重构。仿真结果表明
随着散斑平均尺寸的增大
GI、DGI和PGI重构图像的PSNR都有显著的提高
最高可达到7 dB;而CGI重构图像的PSNR没有明显的提高。此外
当实验中的物臂和参考臂不完全对称时
双臂的散斑平均尺寸会有一定的偏差。4种方案重构图像的PSNR都随着偏差的增大有不同程度的下降
直至图像无法辨认。在保证重构图像可辨认的条件下
GI和DGI容许的偏差较大
CGI次之
PGI最小。
The influence of speckle average size on the ghost imaging with pseudo-thermal light was investigated. A binary image and a grayscale image were used as images of an object to be reconstructed. The reconstruction quality was quantified by Peak Signal to Noise Ratio (PSNR) as the measure
while three sets of reconstructed pictures with different size speckles from small to large were compared intuitively. Four correlation imaging methods including Ghost Imaging (GI)
Differential Ghost Imaging (DGI)
Compressive-sensing Ghost Imaging (CGI) and Pseudo-inverse Ghost Imaging (PGI) were simulated. Then
several groups of speckle fields with a growing size were used to reconstruct respectively by these methods. The simulation result shows that the PSNRs of GI
DGI and PGI are improved to 7 dB remarkable as the speckle size increasing
while the PSNR of the CGI enhances little. Besides
when the object arm and reference arm are not quite symmetrical in the experiment
the speckle size of two arms are deviated slightly. The reconstruction PSNRs of four methods are decreased as the bias increasing and indistinguishable finally. For a distinguishable reconstruction
the allowable deviations of GI and DGI could be bigger than that of the CGI
in which the PGI is the smallest.
STREKALOV D V, SERGIENKO A V, SHIN Y H. Observation of two-photon “ghost” interference and diffraction [J]. Physical Review Letters,1995, 74(18): 3600-3603.
PITTMAN T B, SHIH Y H, STREKALOV D, et al.. Optical imaging by means of two-photon quantum entanglement [J].Physical Review A,1995, 52(5): 3429-3432.
BENNINK R S, BENLEY S J, BOYD R W. Two-photon coincidence imaging with a classical source[J]. Physical Review Letters, 2002, 89(11): 113601-4.
GATTI A, BRAMBILLA E, BACHE M, et al.. Correlated imaging, quantum and classical [J]. Physical Review A, 2004, 70(1): 013802-10.
GATTI A, BRAMBILLA E, BACHE M, et al.. Ghost imaging with thermal light: comparing entanglement and classical correlation [J]. Physical Review Letters, 2004, 93(9): 093602-4.
SHAPIRO H. Computational ghost imaging [J]. Physical Review A, 2008, 78(6): 061802-4.
FERRI F, MAGATTI D, LUGIATO L A, et al.. Differential ghost imaging [J]. Physical Review Letters, 2010, 104(25): 253603-4.
SUN B, WELSH S S, EDGAR M P, et al.. Normalized ghost imaging [J]. Optics Express,2012, 20(15): 16892-16901.
KATZ O, BROMBERG Y, SILBERBERG Y E. Compressive ghost imaging [J]. Applied Physics Letters, 2009, 95(13): 133-141.
ZHANG C, GUO S, CAO J, et al.. Object reconstitution using pseudo-inverse for ghost imaging[J]. Optics Express, 2014, 22(24): 30063-30073.
CLEMENTE P, DURAN V, TORRES-COMPON Y, et al.. Optical encryption based on computational ghost imaging [J]. Optics Letters, 2010, 35(14): 2391-2393.
CHEN W, CHEN X. Marked ghost imaging[J]. Applied Physics Letters, 2014, 104(25): 251109.
ERKMEN B I. Computational ghost imaging for remote sensing[J]. Journal of the Optical Society of America A, 2012, 29(5): 131110.
GONG W L, HAN S S. A method to improve the visibility of ghost images obtained by thermal light[J]. Physics Letters A, 2010, 374(8): 1005-1008.
BASANO L, OTTONELLOA P. Experiment in lensless ghost imaging with thermal light[J]. Applied Physics Letters, 2006, 89(9): 091109.
FERRI F, MAGATTI D, GATTI A, et al.. High-resolution ghost image and ghost diffraction experiments with thermal light[J]. Physical Review Letters, 2005, 94(18): 183602.
LIU H, HAN S S. Spatial longitudinal coherence length of a thermal source and its influence on lensless ghost imaging[J]. Optics Letters, 2008, 33(8): 824-826.
GONG W L, HAN S S. The influence of axial correlation depth of light field on lensless ghost imaging[J]. Journal of the Optical Society of America B, 2010, 27(4): 675-678.
王铭海,曹军胜,郜锋利. 双臂对称性对压缩传感用于关联成像重构的影响[J]. 光学 精密工程,2014,22(6):1438-1445. WANG M H, CAO J SH, GAO F L. Influence of two-arm symmetry on reconstructed image of compressive sensing for ghost imaging[J]. Opt. Precision Eng., 2014, 22(6): 1438-1445. (in Chinese)
郭树旭,张驰,曹军胜,等. 基于压缩感知归一化关联成像实现目标重构[J]. 光学 精密工程,2015,23(1):288-294. GUO SH X, ZHANG CH, CAO J SH, et al.. Object reconstruction by compressive sensing based normalized ghost imaging [J]. Opt. Precision Eng., 2015, 23(1): 288-294. (in Chinese)
白旭,李永强,赵生妹. 基于压缩感知的差分关联成像方案研究[J]. 物理学报,2013,62(4):044209-8. BAI X, LI Y Q, ZHAO SH M. Differential compressive correlated imaging[J]. Acta Physica Sinica, 2013, 62(4): 044209-8. (in Chinese)
徐美芳,王维彪,高文宏. 激光投影显示中静态复合散斑的表征与建模[J]. 光学 精密工程,2015,21(12):3021-3028. XU M F, WANG W B, GAO W H. Characterization and modeling of static compound speckle in laser projection display[J]. Opt. Precision Eng., 2015, 21(12): 3021-3028. (in Chinese)
古德曼. 光学中的散斑现象:理论与应用 [M].北京:科学出版社,2009. GOODMAN J W. Speckle Phenomena in Optics: Theory and Applications[M]. Beijing: Science Press, 2009. (in Chinese)
刘培森. 散斑统计光学基础 [M].北京:科学出版社,1987. LIU P S. Basic of Statistical Speckle Optics[M]. Beijing: Science Press, 2009. (in Chinese)
0
浏览量
482
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构