浏览全部资源
扫码关注微信
1. 中国科学院 长春光学精密机械与物理研究所,吉林 长春,中国,130033
2. 吉林大学 物理学院,吉林 长春,130012
收稿日期:2015-05-17,
修回日期:2015-06-13,
纸质出版日期:2015-11-14
移动端阅览
张航, 郑玉权, 王文全等. 基于遥感监测的高光谱分辨率与高信噪比光谱探测技术[J]. 光学精密工程, 2015,23(10z): 229-238
ZHANG Hang, ZHENG Yu-quan, WANG Wen-quan etc. Spectral detection with high spectral resolution and high signal-to-noise ratio based on remote sensing monitoring[J]. Editorial Office of Optics and Precision Engineering, 2015,23(10z): 229-238
张航, 郑玉权, 王文全等. 基于遥感监测的高光谱分辨率与高信噪比光谱探测技术[J]. 光学精密工程, 2015,23(10z): 229-238 DOI: 10.3788/OPE.20152313.0229.
ZHANG Hang, ZHENG Yu-quan, WANG Wen-quan etc. Spectral detection with high spectral resolution and high signal-to-noise ratio based on remote sensing monitoring[J]. Editorial Office of Optics and Precision Engineering, 2015,23(10z): 229-238 DOI: 10.3788/OPE.20152313.0229.
为了精确利用卫星遥感监测获取的CO
2
等温室气体的信息实现对CO
2
浓度的反演
研究了高光谱分辨率与高信噪比光谱探测技术。采用大耀斑角反射式平面衍射光栅作为分光元件设计了光学系统
对0.76
1.61
2.06
μ
m 3个谱段实现了精细光谱分光。根据光学遥感探测理论
推导3个谱段的理论信噪比
揭示了光谱分辨率与信噪比之间的制约关系。选择大像元尺寸、高量子效率的探测器
通过像元合并以及盲元校正等方法
对小信号进行高信噪比探测。建立了一套精细光谱定标装置
分别测量3个谱段内各个光谱通道的线性函数
并进行高斯拟合
从而准确标定各通道的中心波长和半宽度。实验验证显示光谱分辨率可达0.04 nm
满足高光谱分辨率的光谱探测需求
为CO
2
浓度的精确反演奠定了技术基础。
To invert precisely the CO
2
concentration in atmosphere by the green-house gas information obtained by satellite remote sensing
this paper researches the high spectral detection technology with high spectral resolution and high Signal-to-Noise Ratio(SNR). A method of fine spectrum splitting was demonstrated using a large area diffractive grating at three spectral bands of 0.76
1.61
2.06
μ
m. According to the theory of remote sensing detection
the theoretical SNRs of the three bands were deduced to reveal the restrict relation between the spectral resolution and the SNR. The detectors with large pixel sizes and high quantum efficiency were selected to detect the weak signal with high SNR by using methods of pixel combination and blind pixel correction. A spectral calibration facility was established to measure the instrument line shapes(ILSs) of the three bands
and the center wavelength and the full-width at half maximum(FWHM) of each spectral channel were determined with a Gaussian fit to the core of each ILS. The results of the spectral calibration indicate that the spectral resolution is 0.04 nm. The above-mentioned study provides the basis for the realization of accurate detection of absorption spectra and 1-4×10
-6
reversion precision of CO
2
.
MIAO R, LU N, YAO L, et al.. Multi-year comparison of carbon dioxide from satellite data with ground-based FTS measurements(2003-2011)[J]. Remote Sensing, 2013, 5(7):3431-3456.
THOMAS S P, EDWARD T O, HAI N, et al.. Global variability of midtropospheric carbon dioxide as measured by the atmospheric infrared sounder[J]. J. Appl. Remote Sens., 2014, 8:84984.
郑玉权. 温室气体遥感探测仪器发展现状[J]. 中国光学, 2011, 4(6):547-561. ZHENG Y Q. Development status of remote sensing instruments for greenhouse gases[J]. Chinese Optics, 2011, 4(6):547-561.(in Chinese)
KUZE A, SUTO H, NAKAJIMA M. Thermal and near infrared sensor for carbon observation Fourier-transform spectrometer on the Greenhouse Gases Observing Satellite for green-house gases monitoring[J]. Applied Optics, 2009, 48(35):6716-6733.
HANSON H, YUEN K, CRISP D. Orbiting Carbon Observatory-2:observing CO2 from space[J]. The Earth Observer, 2014, 26(4):458-465.
BASILIO R R, POLLOCK H R, SARAH L. OCO-2(Orbiting Carbon Observatory-2) mission operations planning and initial operations experiences[J]. SPIE, 2014, 9241:924105.
MICHAEL B, HEINRICH B, MAXIMILIAN R, et al.. Passive satellite remote sensing of carbon dioxide and methane:SCIMACHY, GOSAT, Carbon Sat[J]. Geophys Ress Abstracts, 2011, 13:6556.
KATAOKA F, KNUTESON R O, KUZE A, et al.. TIR spectral radiance calibration of the GOSAT satellite borne TANSO-FTS with the aircraft-based S-HIS and the ground-based S-AERI at the railroad valley desert playa[J]. IEEE Trans. Geosci. Remote Sens., 2014, 52(1):89-105.
梁静秋,梁中翥,吕金光,等. 空间调制微型傅里叶变换红外光谱仪研究[J]. 中国光学, 2015, 8(2):277-297. LIANG J Q, LIANG ZH ZH, LU J G, et al.. Micro spatial modulation Fourier transform infrared spectrometer[J]. Chinese Optics, 2015, 8(2):277-297.(in Chinese)
张晓龙,刘英,孙强,等. 消谱线弯曲长波红外成像光谱仪设计[J]. 光学 精密工程, 2014, 22(2):266-273. ZHANG X L, LIU Y, SUN Q, et al.. Design of long-wave infrared imaging spectrometer with eliminating spectral curvature[J]. Opt. Precision Eng., 2014, 22(2):266-273.(in Chinese)
张葆,崔恩坤,洪永丰. 红外双波段双视场共光路光学系统[J]. 光学 精密工程, 2015, 23(2):395-401. ZHANG B, CUI E K, HONG Y F. Infrared MWIR/LWIR dual-FOV common-path optical system[J]. Opt. Precision Eng., 2015, 23(2):395-401.(in Chinese)
郑玉权,高志良. CO2探测仪光学系统设计[J]. 光学 精密工程, 2014, 20(12):2645-2653. ZHENG Y Q, GAO ZH L. Optical system design of CO2 sounder[J]. Opt. Precision Eng., 2014, 20(12):2645-2653.(in Chinese)
高明辉,郑玉权. CO2探测仪单通道光学系统设计验证方法[J]. 中国光学, 2014, 7(6):949-955. GAO M H, ZHENG Y Q. Valiadation method of single-channel optical system design of CO2 detector[J]. Chinese Optics, 2014, 7(6):949-955.(in Chinese)
姜岩秀,韩建,李文昊,等. 平面全息光栅曝光系统中的分光器件特性分析[J]. 中国光学, 2015, 8(2):241-247. JIANG X Y, HAN J, LI W H, et al.. Characteristic analysis for different beamsplitters of the plane holographic grating lithography system[J]. Chinese Optics, 2015, 8(2):241-247.(in Chinese)
张一舟,许廷发,刘子伟,等. 基于Savitzky-Golay加权拟合的红外图像非均匀性条带校正方法[J]. 中国光学, 2015, 8(1):51-59. ZHANG Y ZH, XU T F, LIU Z W, et al.. Correction method for stripe nonuniformity in infrared images based on Savitzky-Golay weighted fitting algorithm[J]. Chinese Optics, 2015, 8(1):51-59.(in Chinese)
张检民,冯国斌,杨鹏翎,等. 碲镉汞光导探测器在中红外激光测量中的热问题[J]. 光学 精密工程, 2015, 23(1):22-30. ZHANG J M, FENG G B, YANG P L, et al.. Thermal issues of photoconductive HgCdTe detector in mid-infrared laser parameter measurement[J]. Opt. Precision Eng., 2015, 23(1):22-30.(in Chinese)
李毅,吴清文,陈立恒,等. 二氧化碳探测仪的热控系统[J]. 光学 精密工程, 2015, 23(4):1053-1061. LI Y, WU Q W, CHEN L H, et al.. Thermal control system of carbon dioxide detection instrument[J]. Opt. Precision Eng., 2015, 23(4):1053-1061.(in Chinese)
DAY J O, O'DELL C W, POLLOCK R, et al.. Preflight spectral calibration of the orbiting carbon observatory[J]. IEEE Trans. Geosci. Remote Sens., 2011, 49(7):2793-2801.
SAKUMA F, BRUEGGE C J, RIDER D, et al.. OCO/GOSAT preflight cross-calibration experiment[J]. IEEE Trans. Geosci. Remote Sens., 2010, 48(1):585-599.
张运海,杨皓,孔晨旻. 激光扫描共聚焦光谱成像系统[J]. 光学 精密工程, 2014, 22(6):1446-1453. ZHANG Y H, YANG H, KONG CH H. Spectral imaging system on laser scanning confocal microscopy[J]. Opt. Precision Eng., 2014, 22(6):1446-1453.(in Chinese)
曹海霞,吴娜,冯树龙,等. 单色仪与成像光谱仪的交互光谱定标[J]. 光学 精密工程, 2014, 22(10):2585-2591. CAO H X, WU N, FENG SH L,et al.. Cross-spectral calibration for monochromator and imaging spectrometer[J]. Opt. Precision Eng., 2014, 22(10):2585-2591.(in Chinese)
施建华,伏思华,谢文科,等. 光栅光谱仪光谱响应误差校正[J]. 中国光学, 2014, 7(3):483-490. SHI J H, FU S H, XIE W K, et al.. Error correction of spectral response characteristic of grating spectrometer[J]. Chinese Optics, 2014, 7(3):483-490.(in Chinese)
0
浏览量
431
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构