浏览全部资源
扫码关注微信
郑州大学机械工程学院,河南 郑州,450001
收稿日期:2015-06-08,
修回日期:2015-06-28,
纸质出版日期:2015-11-14
移动端阅览
郑鹏, 张琳娜, 吴建权等. 数字投影三维测量系统纵向标定的改进[J]. 光学精密工程, 2015,23(10z): 239-246
ZHENG Peng, ZHANG Lin-na, WU Jian-quan etc. Improvement of depth calibration for digital projection 3D measurement system[J]. Editorial Office of Optics and Precision Engineering, 2015,23(10z): 239-246
郑鹏, 张琳娜, 吴建权等. 数字投影三维测量系统纵向标定的改进[J]. 光学精密工程, 2015,23(10z): 239-246 DOI: 10.3788/OPE.20152313.0239.
ZHENG Peng, ZHANG Lin-na, WU Jian-quan etc. Improvement of depth calibration for digital projection 3D measurement system[J]. Editorial Office of Optics and Precision Engineering, 2015,23(10z): 239-246 DOI: 10.3788/OPE.20152313.0239.
基于投影测量原理及现有的标定技术提出了一种改进的纵向标定方法。分析了测量系统在任意几何设置下参考平面与成像面之间的坐标转换关系
构建了相位差-高度之间的映射数学模型
并给出具体的测量系统逆向标定操作过程。该标定几何模型放宽了对投影及摄像系统方位设置的限制条件
标定操作只需确定测量系统的数个待定参数
各参数与成像面上的像素点坐标值不相关
克服了原标定方法中对每个像素点进行繁琐的参数标定过程
从而有效减少了计算的复杂程度
降低了标定参数存储的空间。基于构建的数字投影光学三维测量系统
分别采用两种标定方法对系统进行了标定实验和实测对比
并分析了测量系统误差。结果表明:基于新标定方法测得的平板面形PV值小于原标定方法测得值
在
Z
向0~48 mm
测得不同位置PV值的标准差为0.0036 mm
验证了改进方法的可行性。研究成果对于提高数字投影光学三维测量系统的标定效率和可操作性具有积极意义。
On the basis of measuring principle and existing calibration technology
an improved depth calibration method was presented. After analysis of the coordinate transforming relation between reference plane and imaging plane of an ordinary geometry setting system
the mapping relation between the depth and the phase difference was established. Then
the reverse calibration process was given. The position restriction of a projection system and an imaging system was relaxed by the new calibration model. In the calibration process
calibration parameters were irrelevant to pixel coordinate values
so every pixel did not need its calibration parameters. Compared with the original method
the new method greatly reduces the calculative complexity and storage space of calibration parameters. Two calibration methods were used to calibrate the measurement system respectively. Then
a flat object was measured by different calibration systems
the results were compared and measuring errors were analyzed. The results show that the measured PV value of the object with the new method is smaller than that of the original method. In the
Z
direction(0 to 48 mm)
the standard deviation of PV values is 0.0036 mm
which verifies the validity of the improved method. This research has positive significance on enhancing calibration efficiency and operability for digital projection measurement systems.
戴美玲,杨福俊,何小元. 基于双频彩色光栅投影测量不连续物体三维形貌[J]. 光学 精密工程, 2013, 21(1):8-12. DAI M L, YANG F J, H X Y. Three-dimensional shape measurement of objects with discontinuities by dual-frequency color fringe projection[J]. Opt. Precision Eng., 2013, 21(1):8-12.(in Chinese)
杨守瑞,尹仕斌,任永杰,等. 机器人柔性视觉测量系统标定方法的改进[J]. 光学 精密工程, 2014, 22(12):3239-3246. YANG SH R, YIN SH B, REN Y J, et al.. Improvement of calibration method for robotic flexible visual measurement systems[J]. Opt. Precision Eng., 2014, 22(12):3239-3246.(in Chinese)
陈新禹,马孜,陈天飞. 线结构光传感器模型的简易标定[J]. 光学 精密工程, 2013, 20(11):2345-2352. CHEN X Y, MA Z, CHEN T F. Calibration model for line structured light vision sensor[J]. Opt. Precision Eng., 2013, 20(11):2345-2352.(in Chinese)
FU Y J, WANG Y L, WANG W, et al.. Least-squares calibration method for fringe projection profilometry with some practical considerations[J]. Optik, 2013, 124(19):4041-4045.
LI B W, ZHANG S. Structured light system calibration method with optimal fringe angle[J]. Applied Optics, 2014, 53(33):7942-7950.
XIAO Y L, XUE J P, SU X Y. Robust self-calibration three-dimensional shape measurement in fringe-projection photogrammetry[J]. Optics Letters, 2013, 38(5):694-696.
ANCHINI R, DILEO G, LIGUORI C. A new calibration procedure for 3-D shape measurement system based on phase-shifting projected fringe profilometry[J]. IEEE Transactions on Instrumentation and Measurement, 2009, 58(5):1291-1298.
ZHOU W, SU X Y. A direct mapping algorithm for phase-measuring profilometry[J]. Journal of Modern Optics, 1994, 41(1):89-94.
TAVARES P J, VAZ M A. Linear calibration procedure for the phase-to-height relationship in phase measurement profilometry[J]. Optics Communications, 2007, 274(2):307-314.
毛先富, 陈文静, 苏显渝,等. 傅里叶变换轮廓术中新的相位及高度算法分析[J]. 光学学报, 2007, 27(2):225-229. MAO X F, CHEN W J, SU X Y, et al.. Analysis of new phase and height algorithm in Fourier transform profilometry[J]. Acta Optica Sinica, 2007, 27(2):225-229.(in Chinese)
GUO H W, HE H T, YU Y J,et al.. Least-squares calibration method for fringe projection profilometry[J]. Optical Engineering, 2005, 44(3):033603.
于冲, 郭红卫. 条纹投射系统深度标定中的数据处理算法分析[J]. 仪器仪表学报, 2013, 34(8):1855-1863. YU CH, GUO H W. Analysis of data processing algorithms in depth calibration of fringe projection system[J]. Chinese Journal of Scientific Instrument, 2013, 34(8):1855-1863.(in Chinese)
郑鹏. 面阵传感圆柱度非接触测量方法及评定技术研究[D]. 上海:上海大学, 2009. ZHENG P. Non-contact Measurement and Evaluation of Cylindricity Based on Area-array Sensing Technique[D]. Shanghai:Shanghai University, 2009.(in Chinese)
郑鹏, 郭红卫, 赵展,等. 数字条纹投射技术中改进的非线性校正方法[J]. 光学技术,2009, 35(1):13-17. ZHENG P, GUO H W, ZHAO ZH, et al.. Improved nonlinearity correction method for digital fringe projection profilometry[J]. Optical Technique, 2009, 35(1):13-17.(in Chinese)
0
浏览量
114
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构