浏览全部资源
扫码关注微信
1. 南京理工大学 机械工程学院,江苏 南京,中国,210094
2. 南京航空航天大学 航天学院,江苏 南京,210016
收稿日期:2015-04-20,
修回日期:2015-05-21,
纸质出版日期:2015-11-14
移动端阅览
王洪成, 朱丽, 杨利军等. 基于微流体脉冲惯性力驱动虾卵细胞的液滴包裹[J]. 光学精密工程, 2015,23(10z): 286-290
WANG Hong-cheng, ZHU Li, YANG Li-jun etc. Droplet-based encapsulating of shrimp oocyte actuated by microfluidic pulse inertial force[J]. Editorial Office of Optics and Precision Engineering, 2015,23(10z): 286-290
王洪成, 朱丽, 杨利军等. 基于微流体脉冲惯性力驱动虾卵细胞的液滴包裹[J]. 光学精密工程, 2015,23(10z): 286-290 DOI: 10.3788/OPE.20152313.0286.
WANG Hong-cheng, ZHU Li, YANG Li-jun etc. Droplet-based encapsulating of shrimp oocyte actuated by microfluidic pulse inertial force[J]. Editorial Office of Optics and Precision Engineering, 2015,23(10z): 286-290 DOI: 10.3788/OPE.20152313.0286.
现有微流控等液滴单细胞包裹技术通常用来包裹平均粒径约10
μ
m左右的小尺度细胞
存在着细胞包裹率不高和存活率较低的问题。考虑到微流体脉冲驱动技术能够实现油相中水相微液喷射且能精确控制微液滴的尺寸大小
本文提出了基于微流体脉冲惯性力驱动的虾卵细胞液滴包裹方法。搭建了基于微流体脉冲惯性力驱动的大尺度细胞(虾卵细胞)液滴单细胞包裹的实验装置
研究了微流体驱动参数对水相微液滴大小和单细胞包裹率的影响规律
通过调整微喷嘴尺寸和驱动电压
在油相中获得了直径为70~180
μ
m的水相微液滴;实现了微喷嘴内虾卵细胞在沿微喷嘴轴线方向上不同位置处的规则排列
完成了1、2、3个或多个虾卵细胞的单液滴包裹
单细胞包裹率可达40%。本文的研究结果也可为大尺度细胞的液滴包裹方法提供参考。
The existing droplet-based single cell encapsulation technology controlled by micro-fluidics is usually used to encapsulate micro cells with the scale of 10 micrometer and it shows disadvantages of low single cell encapsulating rates and low survival rates. In consideration of the microfluidic pulse driving technology can produce aqueous phase droplets in an oil phase environment and can precisely control the droplet size
this paper proposes a droplet-based encapsulating method of shrimp oocyte actuated by microfluidic pulse inertia force and establishes an experiment device for encapsulating large scale cells into single micro droplet. It researches the influence of microfluidic driving parameters on the droplet size and single cell encapsulating rate. By adjusting the size of a micro-nozzle and driving voltage
the aqueous phase micro droplet with a diameter of 70-180
μ
m is obtained
and the regular arrangement of shrimp oocyte in the micro-nozzle is implemented in different locations on the axis direction of the nozzle arrangement. A single droplet randomly encapsulated with one
two
three or four cells is realized. The single cell encapsulating rate has reached by 40%. The results can provide references for larger scale cell encapsulation method.
RAO C V, WOLF D M, ARKIN A P. Exploitation and tolerance of intracelluar noise[J]. Nature, 2002, 420:231-237.
DAVID G S, CHRISTOPHER D W, DAVID A R. Measurement of single-cell dynamics[J]. Nature, 2010, 465:736-745.
SAVAS T, JACOB J. H, TIMOTHY K L. Single cell dynamic reveal digital activation and analogue information processing[J]. Nature, 2010, 466:276-271.
JOENSSON H N, SVAHN H A. Droplet microfluidics-A tool for single-cell analysis[J]. Angewandte Chemie International Edition, 2012, 51(49):12176-12192.
MASAHITO H, YURI H, YOHEI N, et al.. Droplet-based microfluidics for high-throughput screening of a metagenomic library for isolation of microbial enzymes[J]. Biosensors and Bioelectronics, 2015, 67:379-385.
YUNPENG B, EMILIE W, HAAKAN N J. Interfacing picoliter droplet microfluidics with addressable microliter compartments using fluorescence activated cell sorting[J]. Sensors and Actuators B:Chemical, 2014, 194:249-254.
TENGYANG J, RAMESH R, MAJID E, et al.. Jetting microfluidics with size-sorting capability for single-cell protease detection[J]. Biosensors and Bioelectroniocs, 2015, 66:19-23.
FEDERICO B, VANNI R, MAURO Z. Lipid droplets fusion in a dipocyte differentiated 3T3-L1 cells:A Monte Carlo simulation[J]. Experimental Cell Research, 2014, 321:201-208.
姚波, 何巧红, 杜文斌, 等 微流控高通量试样引入技术的研究进展[J]. 色谱, 2009, 27(5):662-666. YAO B, HE Q H, DU W B, et al.. Development of high-throughput microfluidic sample introduction techniques[J]. Chinese Journal of Chromatography, 2009, 27(5):662-666.(in Chinese)
章维一, 侯丽雅. 影响流体流动的方法及其装置和应用[P].中国:ZL03152948.8, 2006-5-24. ZHANG W Y, HOU L Y. Method, apparatus and application of affecting fluid flow[P]. China:ZL03152948.8,2006.(in Chinese)
王洪成,侯丽雅,章维一. 驱动电压波形修圆对微流体脉冲惯性力和驱动效果的影响[J]. 光学 精密工程, 2012, 20(10):2251-2259. WANG H CH, HOU L Y, ZHANG W Y. Influence of rounded driving voltage waves on micro-dluidic pluse inertia force and driving effects[J]. Opt. Precision Eng., 2012, 20(10):2251-2259.(in Chinese)
朱晓阳, 侯丽雅,郑悦,等. 微流体数字化技术制备聚合物微透镜阵列. 光学 精密工程, 2014, 22(2):360-368. ZHU X Y, HOU L Y, ZHENG Y, et al.. Fabrication of polymer micro-lens array by micro-fluid digitalization[J]. Opt. Precision Eng., 2014, 22(2):360-368.
WANG H C, HOU L Y, ZHANG W Y. A drop-on-demand droplet generator for coating catalytic materials on microhotplates of micropellistor[J]. Sensors and Actuators B:chemical, 2013, 183:342-349.
WANG H C, ZHANG W Y, DAI Z D. A novel approach for encapsulating cells into monodisperse picolitre droplets actuated by microfluidic pulse inertia force[J]. Analytical Methods, 2014, 6(24):9754-9760.
章维一, 侯丽雅. 微流体数字化的科学与技术问题(I):概念、方法和效果[J]. 科技导报, 2005,23(8):4-9. ZHANG W Y, HOU L Y. Scientific and technological problems of digitalization of microfluidics(part I):concept, method and result[J]. Science & Technology Review, 2005,23(8):4-9.(in Chinese)
0
浏览量
402
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构